Mostrar registro simples

dc.contributor.authorMarijuán López, Carlos 
dc.contributor.authorSoto, Ricardo L.
dc.date.accessioned2025-11-03T10:42:10Z
dc.date.available2025-11-03T10:42:10Z
dc.date.issued2024
dc.identifier.citationThe Electronic Journal of Linear Algebra, 2024, vol. 40, p. 382-395es
dc.identifier.issn1081-3810es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/79184
dc.descriptionProducción Científicaes
dc.description.abstractA spectrum Λ={λ1,…,λn} of complex numbers is said to be realizable if it is the spectrum of an entrywise nonnegative matrix A. The spectrum Λ is diagonalizably realizable (DR) if the realizing matrix A is diagonalizable, and Λ is universally realizable (UR) if it is realizable for each possible Jordan canonical form allowed by Λ. In 1981, Minc proved that if Λ is the spectrum of a diagonalizable positive matrix, then Λ is universally realizable. One of the main open questions about the problem of universal realizability of spectra is whether DR implies UR. Here, we prove a surprisingly simple result, which shows how diagonalizably realizable implies universally realizable.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherInternational Linear Algebra Societyes
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationSpectra diagonalizably realizablees
dc.subject.classificationSpectra universally realizablees
dc.subject.classificationNonnegative matriceses
dc.subject.classificationJordan structurees
dc.titleDiagonalizably realizable implies universally realizablees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The Author(s)es
dc.identifier.doi10.13001/ela.2024.8441es
dc.relation.publisherversionhttps://journals.uwyo.edu/index.php/ela/article/view/8441es
dc.identifier.publicationfirstpage382es
dc.identifier.publicationlastpage395es
dc.identifier.publicationtitleThe Electronic Journal of Linear Algebraes
dc.identifier.publicationvolume40es
dc.peerreviewedSIes
dc.description.projectMCIU/AEI/10.13039/501100011033 y por el FEDER «Una manera de hacer Europa» ( PID2022-138906NB-C21)es
dc.description.projectUniversidad Católica del Norte-VRIDT 036-2020, NUCLEO UCN VRIDT-083-2020, Chile.es
dc.identifier.essn1081-3810es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/AcceptedVersion/Postprintes
dc.subject.unesco12 Matemáticases


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples