Afficher la notice abrégée

dc.contributor.authorCova Bonillo, A.
dc.contributor.authorGabana Molina, Pedro 
dc.contributor.authorKhedkar, N.
dc.contributor.authorBrinklow, G.
dc.contributor.authorWu, M.
dc.contributor.authorHerreros, J.M.
dc.contributor.authorZeraati Rezaei, S.
dc.contributor.authorTsolakis, A.
dc.contributor.authorAmbalakatte, A.
dc.contributor.authorCairns, A.
dc.contributor.authorHall, J.
dc.date.accessioned2025-11-05T11:14:16Z
dc.date.available2025-11-05T11:14:16Z
dc.date.issued2025
dc.identifier.citationInternational Journal of Hydrogen Energy, Volume 187, 2025, 150734es
dc.identifier.issn0360-3199es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/79300
dc.descriptionProducción Científicaes
dc.description.abstractAmmonia, a promising zero-carbon fuel, faces engine application challenges from high NOx and ammonia slip. A key knowledge gap remains in predicting NOx and ammonia slip with chemical kinetic mechanisms within complex engine environments, beyond simple metrics. This research evaluates 14 ammonia combustion mechanisms in a spark-ignition (SI) engine model, using a two-zone thermodynamic approach. Experimental data from stoichiometric pure ammonia combustion in a research engine validate NOx predictions. The analysis details NOx formation, NH3 slip, NO production rates, and differentiates thermal-NOx from fuel-NOx. While most mechanisms predict NOx within 20 % error, those by Otomo, Stagni, and Nakamura show superior accuracy. Furthermore, a significant divergence in N2O predictions was found; only the Konnov mechanism yielded plausible concentrations (14–24 ppm), exposing a common limitation in other models. This study identifies thermal-NOx as ∼75 % of total NOx, offering vital insights for targeted emission control and guiding mechanism selection for engine development.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAmoníacoes
dc.subjectNOxes
dc.subjectPredicciónes
dc.subjectCombustiónes
dc.subjectMotores
dc.subjectMecanismo cinéticoes
dc.titlePredicting NOx emissions from ammonia engines – Fuel and thermal effectses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Authorses
dc.identifier.doi10.1016/j.ijhydene.2025.150734es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0360319925037334?via%3Dihub#sec7es
dc.identifier.publicationfirstpage150734es
dc.identifier.publicationtitleInternational Journal of Hydrogen Energyes
dc.identifier.publicationvolume187es
dc.peerreviewedSIes
dc.description.projectUK Research and Innovation: Decarbonised Clean Marine: Green Ammonia Thermal Propulsion - MariNH3 (EP/W016656/1)es
dc.rightsAttribution 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée