Show simple item record

dc.contributor.authorTejero González, Ana 
dc.contributor.authorAndrés Chicote, Manuel 
dc.contributor.authorVelasco Gόmez, Eloy
dc.contributor.authorUrso, Alessandra
dc.contributor.authorCostanzo, Vincenzo
dc.contributor.authorEvola, Gianpiero
dc.contributor.authorNocera, Francesco
dc.date.accessioned2025-11-19T12:50:25Z
dc.date.available2025-11-19T12:50:25Z
dc.date.issued2025
dc.identifier.citationEnergy and Buildings, 2025, vol. 348, p. 116431es
dc.identifier.issn0378-7788es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/79840
dc.descriptionProducción Científicaes
dc.description.abstractEvaporative cooling can improve energy efficiency in buildings; however, the air supplied to indoor spaces may be excessively humid or not cool enough to ensure thermal comfort. To overcome this, Indirect Evaporative Coolers maintain a constant humidity ratio at the product airstream, and regenerative airflow configurations allow cooling below the inlet air’s wet bulb temperature. Such devices rely on the well-known Maisotsenko cycle and are often referred to as Dew Point Evaporative Coolers, as they can ideally reach the dew point temperature of inlet air. This work proposes a mixed-flow prototype that combines the superior thermal performance of counter-flow designs with the compact size of cross-flow systems. The heat exchanger is made of polycarbonate plates, while water distribution is optimized thanks to outlet nozzles and a wicking material placed on the wet side of such plates. The device has a volume of 0.025 m3 and supplies 40 l/s of cooled air, achieving a cooling capacity greater than 325 W under inlet air conditions of 40 ◦C and 30 % relative humidity, with a water consumption of 1.9 l/h. Experimental results demonstrate that increasing the inlet dry bulb temperature and decreasing the inlet air relative humidity significantly improve temperature drop and cooling capacity, though they have a limited effect on the thermal effectiveness. Compared to a previous one-stage prototype, the two- stage configuration increases the temperature drop and both the wet bulb and dew point effectiveness by about 50 %. However, the cooling capacity barely improves less than 17 %, due to the use of part of the product air as working air.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subject.classificationDew Point Indirect Evaporative Cooleres
dc.subject.classificationMultiple stagees
dc.subject.classificationExperimental characterizationes
dc.subject.classificationThermal effectivenesses
dc.subject.classificationCooling capacityes
dc.titleExperimental performance of a new mixed-flow two-stage regenerative indirect evaporative cooleres
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1016/j.enbuild.2025.116431es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0378778825011612es
dc.identifier.publicationfirstpage116431es
dc.identifier.publicationtitleEnergy and Buildingses
dc.identifier.publicationvolume348es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación - MCIN/AEI/10.13039/501100011033 y la Unión Europea a través del programa “NextGenerationEU”/PRTR (proyecto de investigación TED2021-129652A-C22)es
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3328 Procesos Tecnológicoses


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record