Mostrar el registro sencillo del ítem

dc.contributor.authorFernández Temprano, Miguel Alejandro 
dc.contributor.authorRodríguez del Tío, María Pilar 
dc.contributor.authorPoza Casado, Irene 
dc.contributor.authorMeiss Rodríguez, Alberto 
dc.date.accessioned2025-11-24T12:52:44Z
dc.date.available2025-11-24T12:52:44Z
dc.date.issued2026
dc.identifier.citationEnergy and Buildings, 2026, vol. 351, 116740, p. 1-14.es
dc.identifier.issn0378-7788es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/80044
dc.description.abstractEstimating the level of airtightness of a building can offer valuable information for energy performance simulation tools or decision-making during retrofitting processes. However, it remains a challenge given the great variability of the variables involved, the complexity of addressing some of these variables, and some contextspecific features. Based on previous research in this direction, this paper proposes an alternative predictive model based on Generalized Linear Models (GLIM) and validated using cross-validation that involves 13 main effects and 4 interactions. This leads to a substantial enhancement in predictive capacity, accounting for nearly 50% of the response variability. A detailed set of variables fully described offers the opportunity to transcend region-specific applicability and opens a window for other populations. The model provides more reliable estimates of airtightness and expands its applicability to a broader range of construction conditions, while maintaining the statistical significance of its predictors and achieving a satisfactory fit.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationPredictive model
dc.subject.classificationAirtightness
dc.subject.classificationBlowerdoor
dc.subject.classificationStatistical analysis
dc.titleAn alternative statistical approach to estimate the level of airtightness of existing residential buildings: Influencing factors from measured dataes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)
dc.identifier.doi10.1016/j.enbuild.2025.116740es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0378778825014707
dc.identifier.publicationfirstpage1es
dc.identifier.publicationissue116740es
dc.identifier.publicationlastpage14es
dc.identifier.publicationtitleEnergy and Buildingses
dc.identifier.publicationvolume351es
dc.peerreviewedSIes
dc.description.projectEste trabajo forma parte del proyecto de investigación INFILES - Ministerio de Economía y Competitividad (BIA2015-64321-R)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem