Mostrar el registro sencillo del ítem
| dc.contributor.author | Arjona, Laura | |
| dc.contributor.author | Hernández, Sergio | |
| dc.contributor.author | Narayanswamy, Girish | |
| dc.contributor.author | Bahillo Martínez, Alfonso | |
| dc.contributor.author | Patel, Shwetak | |
| dc.date.accessioned | 2025-12-01T11:38:08Z | |
| dc.date.available | 2025-12-01T11:38:08Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Biomedical Signal Processing and Control, 2025, vol. 105, p. 107556 | es |
| dc.identifier.issn | 1746-8094 | es |
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/80193 | |
| dc.description | Producción Científica | es |
| dc.description.abstract | We present AutoFlow, a Raspberry Pi-based acoustic platform that uses machine learning to autonomously detect and record voiding events. Uroflowmetry, a noninvasive diagnostic test for urinary tract function. Current uroflowmetry tests are not suitable for continuous health monitoring in a nonclinical environment because they are often distressing, costly, and burdensome for the public. To address these limitations, we developed a low-cost platform easily integrated into daily home routines. Using an acoustic dataset of home bathroom sounds, we trained and evaluated five machine learning models. The Gradient Boost model on a Raspberry Pi Zero 2 W achieved 95.63% accuracy and 0.15-second inference time. AutoFlow aims to enhance personalized healthcare at home and in areas with limited specialist access. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | eng | es |
| dc.publisher | Elsevier Ltd. | es |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject.classification | Acoustics | es |
| dc.subject.classification | Sound sensing | es |
| dc.subject.classification | IoT | es |
| dc.subject.classification | Sound-based uroflowmetry | es |
| dc.subject.classification | Edge computing | es |
| dc.subject.classification | Machine learning | es |
| dc.title | Autonomous collection of voiding events for sound uroflowmetries with machine learning | es |
| dc.type | info:eu-repo/semantics/article | es |
| dc.identifier.doi | 10.1016/j.bspc.2025.107556 | es |
| dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S1746809425000679 | es |
| dc.identifier.publicationfirstpage | 107556 | es |
| dc.identifier.publicationtitle | Biomedical Signal Processing and Control | es |
| dc.identifier.publicationvolume | 105 | es |
| dc.peerreviewed | SI | es |
| dc.description.project | Ministerio de Ciencia, Innovación y Universidades a través del proyecto AGINPLACE PID2023-146254OA-C44 | es |
| dc.description.project | Laura Arjona recibió financiación de las ayudas 'Juan de la Cierva' del Ministerio de Economía y Competitividad | es |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional



