Mostrar el registro sencillo del ítem

dc.contributor.authorArjona, Laura
dc.contributor.authorHernández, Sergio
dc.contributor.authorNarayanswamy, Girish
dc.contributor.authorBahillo Martínez, Alfonso 
dc.contributor.authorPatel, Shwetak
dc.date.accessioned2025-12-01T11:38:08Z
dc.date.available2025-12-01T11:38:08Z
dc.date.issued2025
dc.identifier.citationBiomedical Signal Processing and Control, 2025, vol. 105, p. 107556es
dc.identifier.issn1746-8094es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/80193
dc.descriptionProducción Científicaes
dc.description.abstractWe present AutoFlow, a Raspberry Pi-based acoustic platform that uses machine learning to autonomously detect and record voiding events. Uroflowmetry, a noninvasive diagnostic test for urinary tract function. Current uroflowmetry tests are not suitable for continuous health monitoring in a nonclinical environment because they are often distressing, costly, and burdensome for the public. To address these limitations, we developed a low-cost platform easily integrated into daily home routines. Using an acoustic dataset of home bathroom sounds, we trained and evaluated five machine learning models. The Gradient Boost model on a Raspberry Pi Zero 2 W achieved 95.63% accuracy and 0.15-second inference time. AutoFlow aims to enhance personalized healthcare at home and in areas with limited specialist access.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevier Ltd.es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationAcousticses
dc.subject.classificationSound sensinges
dc.subject.classificationIoTes
dc.subject.classificationSound-based uroflowmetryes
dc.subject.classificationEdge computinges
dc.subject.classificationMachine learninges
dc.titleAutonomous collection of voiding events for sound uroflowmetries with machine learninges
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.bspc.2025.107556es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1746809425000679es
dc.identifier.publicationfirstpage107556es
dc.identifier.publicationtitleBiomedical Signal Processing and Controles
dc.identifier.publicationvolume105es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades a través del proyecto AGINPLACE PID2023-146254OA-C44es
dc.description.projectLaura Arjona recibió financiación de las ayudas 'Juan de la Cierva' del Ministerio de Economía y Competitividades
dc.rightsAtribución 4.0 Internacional*
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem