Mostrar registro simples

dc.contributor.authorAlvarez, Marcos Lazaro
dc.contributor.authorArjona, Laura
dc.contributor.authorIglesias Martínez, Miguel E.
dc.contributor.authorBahillo Martínez, Alfonso 
dc.date.accessioned2025-12-01T11:40:58Z
dc.date.available2025-12-01T11:40:58Z
dc.date.issued2024
dc.identifier.citationEURASIP Journal on Audio, Speech, and Music Processing, 2024, vol. 12es
dc.identifier.issn1687-4722es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/80195
dc.descriptionProducción Científicaes
dc.description.abstractThis work constitutes the first approach for automatically classifying the surface that the voiding flow impacts in non-invasive sound uroflowmetry tests using machine learning. Often, the voiding flow impacts the toilet walls (traditionally made of ceramic) instead of the water in the toilet. This may cause a reduction in the strength of the recorded audio signal, leading to a decrease in the amplitude of the extracted envelope. As a result, just from analysing the envelope, it is impossible to tell if that reduction in the envelope amplitude is due to a reduction in the voiding flow or an impact on the toilet wall. In this work, we study the classification of sound uroflowmetry data in male subjects depending on the surface that the urine impacts within the toilet: the three classes are water, ceramic and silence (where silence refers to an interruption of the voiding flow). We explore three frequency bands to study the feasibility of removing the human-speech band (below 8 kHz) to preserve user privacy. Regarding the classification task, three machine learning algorithms were evaluated: the support vector machine, random forest and k-nearest neighbours. These algorithms obtained accuracies of 96%, 99.46% and 99.05%, respectively. The algorithms were trained on a novel dataset consisting of audio signals recorded in four standard Spanish toilets. The dataset consists of 6481 1-s audio signals labelled as silence, voiding on ceramics and voiding on water. The obtained results represent a step forward in evaluating sound uroflowmetry tests without requiring patients to always aim the voiding flow at the water. We open the door for future studies that attempt to estimate the flow parameters and reconstruct the signal envelope based on the surface that the urine hits in the toilet.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringer Naturees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationSound uroflowmetryes
dc.subject.classificationMachine learninges
dc.subject.classificationAutomatic classificationes
dc.subject.classificationSurface automatic classificationes
dc.subject.classificationAcoustic voiding signalses
dc.titleAutomatic classification of the physical surface in sound uroflowmetry using machine learning methodses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1186/S13636-024-00332-Yes
dc.relation.publisherversionhttps://link.springer.com/article/10.1186/s13636-024-00332-y#citeases
dc.identifier.publicationissue1es
dc.identifier.publicationtitleEURASIP Journal on Audio, Speech, and Music Processinges
dc.identifier.publicationvolume2024es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación bajo el proyecto Peace of Mind (ref. PID2019-105470RB-C31)es
dc.description.projectEl trabajo de Miguel E. Iglesias Martínez fue financiado por las 'Ayudas para la recualificación del sistema universitario español 2021-2023' en la modalidad Margarita Salas, convocadas por el Ministerio de Universidades y financiadas por los fondos europeos Next Generation EU a través del Plan de Recuperación, Transformación y Resilienciaes
dc.identifier.essn1687-4722es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples