Mostra i principali dati dell'item
| dc.contributor.author | Masoumi Estahbanati, Maryam | |
| dc.contributor.author | Carmona-Cejudo, Estela | |
| dc.contributor.author | Miguel Jiménez, Ignacio de | |
| dc.contributor.author | Torres-Pérez, Claudia | |
| dc.contributor.author | Durán Barroso, Ramón José | |
| dc.date.accessioned | 2025-12-02T12:29:40Z | |
| dc.date.available | 2025-12-02T12:29:40Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | IEEE Open Journal of the Industrial Electronics Society, 2025, vol. 6, pp. 1312-1334 | es |
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/80235 | |
| dc.description | Producción Científica | es |
| dc.description.abstract | Extreme-edge computing is an emerging paradigm that utilizes the computational capabilities of end devices to perform localized data processing, thus enabling responsive and adaptive operations in industrial settings. This article addresses the challenge of dynamic scheduling and workload distribution in multiautomated guided vehicle (AGV) systems, where tasks include both movement (e.g., navigation, loading and unloading) and data processing (e.g., onboard computation). To capture realistic conditions, a dynamic service request model is adopted, in which each request consists of a set of movement and/or data processing operations. We first present a mathematical formulation to formally define the constraints associated with resource assignment and movement operations. Building on this, we propose a novel heuristic, queue-aware scheduling and deadlock mitigation strategy (QASDMS), for assigning operations to AGVs. QASDMS considers factors, such as AGV locations, resource availability, execution queues, and potential deadlocks, while supporting the arrival of dynamic unpredictable requests. The objective is to minimize the total time required to complete the operations described in the service requests. To evaluate system performance, the resource intensity index (RII) is introduced, which measures CPU and RAM usage relative to the number of completed operations. Simulation results in both medium and large-scale scenarios show that QASDMS improves the total number of completed operations by over 190% compared to a baseline case, while keeping CPU and RAM usage below 21% . Furthermore, QASDMS achieves significantly lower RII values (over 60% reduction), indicating more efficient resource utilization. These results highlight the potential of QASDMS to improve performance in multi-AGV extreme-edge environments. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | eng | es |
| dc.publisher | IEEE | es |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject.classification | Automated guided vehicle (AGV) | es |
| dc.subject.classification | completion time reduction | es |
| dc.subject.classification | deadlock avoidance | es |
| dc.subject.classification | dynamic scheduling | es |
| dc.subject.classification | dual-operation | es |
| dc.subject.classification | Industry 4.0 | es |
| dc.subject.classification | queue-aware scheduling and deadlock mitigation strategy (QASDMS) | es |
| dc.subject.classification | resource allocation | es |
| dc.title | Dynamic Joint Scheduling of Movement and Data Processing Tasks Using Extreme-Edge Computing in Multi-AGV Scenarios | es |
| dc.type | info:eu-repo/semantics/article | es |
| dc.identifier.doi | 10.1109/OJIES.2025.3593281 | es |
| dc.relation.publisherversion | https://ieeexplore.ieee.org/document/11098675 | es |
| dc.identifier.publicationfirstpage | 1312 | es |
| dc.identifier.publicationlastpage | 1334 | es |
| dc.identifier.publicationtitle | IEEE Open Journal of the Industrial Electronics Society | es |
| dc.identifier.publicationvolume | 6 | es |
| dc.peerreviewed | SI | es |
| dc.description.project | EU H2020 Research and Innovation Programme a través del proyecto IoTalentum bajo la subvención Marie Skłodowska-Curie Actions 953442 | es |
| dc.description.project | Ministerio de Ciencia, Innovación y Universidades / Agencia Estatal de Investigación, MICIU/AEI/10.13039/501100011033) a través del proyecto PID2020-112675RB-C42, el proyecto PID2020-112675RB-C43 y el proyecto PID2023-148104OB-C41, siendo este último también cofinanciado por FEDER/Unión Europea (ERDF/EU) | es |
| dc.description.project | Ministerio de Asuntos Económicos y Transformación Digital y la Unión Europea – NextGeneration EU, a través del marco del Plan de Recuperación, Transformación y Resiliencia (PRTR) (Convocatoria UNICO I+D 5G 2021) bajo el proyecto TSI-063000-2021-9-6GSMART-ICC | es |
| dc.description.project | European Union’s Horizon Europe Innovation Actions a través del proyecto 101057083 (Zero-SWARM) | es |
| dc.identifier.essn | 2644-1284 | es |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Files in questo item
Questo item appare nelle seguenti collezioni
La licencia del ítem se describe como Atribución 4.0 Internacional



