• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80455

    Título
    Radial basis function classifiers to help in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry
    Autor
    Marcos Martín, José Víctor
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Álvarez González, DanielAutoridad UVA Orcid
    Campo Matias, Félix delAutoridad UVA Orcid
    López-Coronado Sánchez-Fortún, MiguelAutoridad UVA Orcid
    Zamarrón, Carlos
    Año del Documento
    2008
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Marcos, J.V., Hornero, R., Álvarez, D. et al. Radial basis function classifiers to help in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry. Med Biol Eng Comput 46, 323–332 (2008).
    Abstract
    The aim of this study is to assess the ability of radial basis function (RBF) classifiers as an assistant tool for the diagnosis of the obstructive sleep apnoea syndrome (OSAS). A total of 187 subjects suspected of suffering from OSAS were available for our research. The initial population was divided into training, validation and test sets for deriving and testing our neural classifiers. We used nonlinear features from nocturnal oxygen saturation (SaO2) to perform patients’ classification. We evaluated three different RBF construction techniques based on the following algorithms: k-means (KM), fuzzy c-means (FCM) and orthogonal least squares (OLS). A diagnostic accuracy of 86.1, 84.7 and 85.5% was provided by the networks developed with KM, FCM and OLS, respectively. The three proposed networks achieved an area under the receiver operating characteristic (ROC) curve over 0.90. Our results showed that a useful non-invasive method could be applied to diagnose OSAS from nonlinear features of SaO2 with RBF classifiers.
    ISSN
    0140-0118
    Revisión por pares
    SI
    DOI
    10.1007/s11517-007-0280-0
    Patrocinador
    This research has been supported by Consejería de Sanidad de la Junta de Castilla y León under project SAN/191/VA03/06.
    Version del Editor
    https://link.springer.com/article/10.1007/s11517-007-0280-0
    Propietario de los Derechos
    Springer
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/80455
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Collections
    • DEP41 - Artículos de revista [121]
    Show full item record
    Files in this item
    Nombre:
    marcos_mbec_2008_accepted.pdf
    Tamaño:
    405.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10