• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login
    Estadísticas
    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80881

    Título
    Why are MoS2 monolayers not a good catalyst for the oxygen evolution reaction?
    Autor
    German, Estefania
    Gebauer, Ralph
    Año del Documento
    2020
    Editorial
    Elsevier
    Documento Fuente
    Applied Surface Science 528 (2020) 146591
    Abstract
    We use density functional theory based calculations to study the energetics of the oxygen evolution reaction on a monolayer of MoS2. This material, a prototypical example of a layered transition metal dichalcogenide, is in- tensely studied in the context of many important catalytical applications, in particular for the hydrogen evo- lution reaction. The second half-reaction of the water-splitting process, the oxygen evolution reaction, is almost never considered on this material, due to its low activity. Based on our calculations, we explain this experi- mentally observed poor catalytic activity for the oxygen evolution by the weak binding of two key reaction intermediates (hydroxyl and hydroperoxyl) to the substrate. We explore substitutional doping with oxygen and phosphorous as means to facilitate the oxygen evolution on MoS2 layers. The oxygen substitution slightly in- creases the reaction’s overpotential, but does not significantly change the energetics. The doping with phos- phorous, on the other hand, is not a promising way to promote the oxygen evolution on MoS2 layers. We also explore the role of the edges of MoS2 layers. We find that while the adsorption energies of reaction intermediates are strongly influenced by the presence of an edge, the final reaction overpotential remains nearly the same as on a pristine monolayer, meaning that the presence of edges is not favoring the OER.
    ISSN
    0169-4332
    Revisión por pares
    SI
    DOI
    10.1016/j.apsusc.2020.146591
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/80881
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP33 - Artículos de revista [228]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    1-s2.0-S0169433220313489-main-7.pdf
    Tamaño:
    1.272Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10