Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/81439
Título
Demkov–Fradkin tensor for curved harmonic oscillators
Año del Documento
2025
Editorial
https://link.springer.com/journal/13360
Documento Fuente
Eur. Phys. J. Plus (2025) 140:144
Zusammenfassung
In this work, we obtain the Demkov-Fradkin tensor of symmetries for the quantum curved harmonic
oscillator in a space with constant curvature given by a parameter 𝜅�. In order to construct this tensor we have
firstly found a set of basic operators which satisfy the following conditions: i) their products give symmetries
of the problem; in fact the Hamiltonian is a combination of such products; ii) they generate the space of
eigenfunctions as well as the eigenvalues in an algebraic way; iii) in the limit of zero curvature, they come into
the well known creation/annihilation operators of the flat oscillator. The appropriate products of such basic
operators will produce the curved Demkov-Fradkin tensor. However, these basic operators do not satisfy
Heisenberg commutators but close another Lie algebra. As a by-product, the classical Demkov-Fradkin
tensor for the classical curved harmonic oscillator has been obtained by the same method. The case of
two dimensions has been worked out in detail: the operators close a sok (4) Lie algebra; the spectrum and
eigenfunctions are explicitly solved in an algebraic way and in the classical case the trajectories have been
computed.
Revisión por pares
SI
Patrocinador
European Union–NextGenerationEU, PID2020-113406GB-I0 project funded by the MCIN of Spain and the contribution of the European Cooperation in Science and Technology COST Action CA23130.
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Nombre:
Tamaño:
993.0Kb
Formato:
Adobe PDF
Descripción:
Preprint del artículo publicado
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: CC0 1.0 Universal








