Show simple item record

dc.contributor.authorZanella, Marco Antonio
dc.contributor.authorBarrio Conde, Mikel
dc.contributor.authorGómez Gil, Jaime 
dc.contributor.authorAguiar Pérez, Javier Manuel 
dc.contributor.authorPérez Juárez, María Ángeles 
dc.contributor.authorSilva, Fabio Moreira de
dc.date.accessioned2026-01-19T08:09:50Z
dc.date.available2026-01-19T08:09:50Z
dc.date.issued2025
dc.identifier.citationScientia Agricola, 2025, vol. 82.es
dc.identifier.issn1678-992Xes
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/81785
dc.descriptionProducción Científicaes
dc.description.abstractThe coffee industry is a vital sector of global agriculture. Coffee is one of the most widely traded plant products in the world. Coffee fruit ripeness affects the taste and aroma of the final brewed beverage, coffee farms’ overall yield and economic viability. Traditional methods of assessing coffee fruit ripeness, which rely on manual inspection by skilled workers, are labor-intensive, time-consuming, and prone to subjective interpretation. In this study, we have used the YOLOv9 (You Only Look Once) algorithm that outperformed previous versions particularly by using a new lightweight network architecture called the gelan-c model. The objective of this study was to identify and classify quickly and accurately the degree of ripeness of the harvested coffee fruits into the following classes: unripe, ripe-red, ripe-yellow, and overripe. The images were captured during harvesting with a commercial harvester in a coffee farm in the southern region of the state of Minas Gerais, Brazil. Data augmentation was performed to increase the dataset in terms of images and bounding boxes. Detection performance was obtained for image sizes between 128 and 640 px. The best performance was achieved with an image size of 640 px, reaching a precision level of 99 %, a recall of 98.5 %, an F1-Score of 98.75 %, a mAP@0.5 of 99.25 %, and a mAP@0.5:0.95 of about 85 % during the validation phase. Our study significantly outperforms previous studies on fruit classification in terms of models used, data augmentation strategies, and overall performance.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherPiracicaba SP: Universidade de São Paulo Escola Superior de Agricultura Luiz de Queirozes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCiencias agrariases
dc.subjectCultivo de cafées
dc.subjectProcesos mecanizados de cosechaes
dc.subjectDeep Learning
dc.subject.classificationYOLOes
dc.subject.classificationCultivo de cafées
dc.subject.classificationDetección de frutoses
dc.subject.classificationAgricultura de precisiónes
dc.titleDeep learning to classify the ripeness of coffee fruit in the mechanized harvesting processes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© The Author(s)es
dc.identifier.doi10.1590/1678-992X-2024-0156es
dc.relation.publisherversionhttps://www.scielo.br/j/sa/a/KtS47SY7y4ytX8TtrvcxRnH/?lang=enes
dc.identifier.publicationtitleScientia Agricolaes
dc.identifier.publicationvolume82es
dc.peerreviewedSIes
dc.description.projectFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)es
dc.description.projectComisión Europea-Horizonte 2020: proyecto Marie Sklodowska-Curie (101008297)es
dc.description.projectInstituto de Neurociencias de Castilla y León (Universidad de Salamanca)es
dc.identifier.essn1678-992Xes
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco31 Ciencias Agrariases
dc.subject.unesco1203.04 Inteligencia Artificial


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record