Mostrar el registro sencillo del ítem
| dc.contributor.author | Calvo Cabrero, María Paz | |
| dc.contributor.author | Sanz Serna, Jesús María | |
| dc.contributor.author | Sanz-Alonso, Daniel | |
| dc.date.accessioned | 2026-01-19T12:48:03Z | |
| dc.date.available | 2026-01-19T12:48:03Z | |
| dc.date.issued | 2021 | |
| dc.identifier.citation | Journal of Computational Physics, 2021, vol. 437, 110333 | es |
| dc.identifier.issn | 0021-9991 | es |
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/81820 | |
| dc.description.abstract | The leapfrog integrator is routinely used within the Hamiltonian Monte Carlo method and its variants. We give strong numerical evidence that alternative, easy to implement algo-rithms yield fewer rejections with a given computational effort. When the dimensionality of the target distribution is high, the number of accepted proposals may be multiplied by a factor of three or more. This increase in the number of accepted proposals is not achieved by impairing any positive features of the sampling. We also establish new non-asymptotic and asymptotic results on the monotonic relationship between the expected acceptance rate and the expected energy error. These results further validate the derivation of one of the integrators we consider and are of independent interest. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | eng | es |
| dc.publisher | Elsevier | es |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
| dc.subject.classification | Hamiltonian Monte Carlo | es |
| dc.subject.classification | Numerical integrators | es |
| dc.subject.classification | Expected acceptance rate | es |
| dc.subject.classification | Expected energy error | es |
| dc.title | HMC: Reducing the number of rejections by not using leapfrog and some results on the acceptance rate | es |
| dc.type | info:eu-repo/semantics/article | es |
| dc.identifier.doi | 10.1016/j.jcp.2021.110333 | es |
| dc.identifier.publicationfirstpage | 110333 | es |
| dc.identifier.publicationtitle | Journal of Computational Physics | es |
| dc.identifier.publicationvolume | 437 | es |
| dc.peerreviewed | SI | es |
| dc.description.project | Agencia Estatal de Investigación/FEDER (proyectos PID2019-104927GB-C21 y PID2019-104927GB-C22) | es |
| dc.description.project | Junta de Castilla y Leon/FEDER (proyectos VA105G18 y VA169P20) | es |
| dc.description.project | US National Science Foundation (Grant DMS-2027056 and Grant DMS-1912818/1912802) | es |
| dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |
| dc.subject.unesco | 12 Matemáticas | es |




