• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Producción Vegetal y Recursos Forestales
    • DEP57 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Producción Vegetal y Recursos Forestales
    • DEP57 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/81822

    Título
    Does machine learning outperform logistic regression in predicting individual tree mortality?
    Autor
    Vázquez Veloso, AitorAutoridad UVA Orcid
    Toraño Caicoya, Astor
    Bravo Oviedo, FelipeAutoridad UVA Orcid
    Biber, Peter
    Uhl, Enno
    Pretzsch, HansAutoridad UVA
    Año del Documento
    2025
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Ecological Informatics, September 2025, Volume 88, 103140
    Resumen
    Tree mortality is a crucial process in forest dynamics and a key component of forest growth models and simulators. Factors like competition, drought, and pathogens drive tree mortality, but the underlying mechanism is challenging to model. The current environmental changes are even complicating model approaches as they influence and alter all the factors involving mortality. However, innovative classification algorithms can go deep into data to find patterns that can model or even explain their relationship. We use Logistic binomial Regression as the reference algorithm for predicting individual tree mortality. However, different machine learning (ML) alternatives already applied to other forest modeling topics can be used for this purpose. Here, we compare the performance of five different ML algorithms (Decision Trees, Random Forest, Naive Bayes, K-Nearest Neighbour, and Support Vector Machine) against Logistic binomial Regression in individual tree mortality classification under 40 different case studies and a cross-validation case study. The data used corresponds to Norway spruce long-term experimental plots, which have a total of 75,522 tree records and a 10.28 % mortality rate on average. Through different case studies, when more variables were used, general performance improved as expected, while more extensive datasets decreased the performance level of the algorithms. Performance was also higher when plots remained without management compared to thinned ones. Random Forest outperformed the other algorithms in all the cases except cross-validation, where it was the weaker one. Our results demonstrate the potential of ML in assessing tree mortality. When the model application is not clearly defined and/or model interpretability is needed, Logistic binomial Regression is still the best tool for evaluating individual tree mortality.
    Materias Unesco
    3106.08 Silvicultura
    Palabras Clave
    Norway spruce
    Survival
    Artificial intelligence
    Supervised learning
    Random Forest
    Empirical mortality models
    ISSN
    1574-9541
    Revisión por pares
    SI
    DOI
    10.1016/j.ecoinf.2025.103140
    Patrocinador
    Funds were directly received from the European Union and Junta de Castilla y León Education Council (ORDEN EDU/842/2022), and from the University of Valladolid through “MOVILIDAD DE ESTUDIANTES DE DOCTORADO Uva 2023”. This study has also been subsidized by the Junta de Castilla y León through the projects “CLU-2019-01 and CL-EI-2021-05 – iuFOR Institute Unit of Excellence” of the University of Valladolid, co-financed by the European Regional Development Fund (ERDF “Europe drives our growth”), and from the projects “778322/CARE4C/H2020/MSCA/RISE/2017 – Carbon smart forestry under climate change” and the IMFLEX Grant PID2021-126275OB-C22 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1574954125001499?via%3Dihub
    Propietario de los Derechos
    © 2025 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/81822
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP57 - Artículos de revista [121]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Ecological-Informatics-88-2025-103140.pdf
    Tamaño:
    4.216Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución-NoComercial 4.0 InternacionalLa licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10