| dc.contributor.advisor | Delgado de la Mata, Félix | |
| dc.contributor.advisor | García Marco, Ignacio | |
| dc.contributor.advisor | Giménez Martín, Philippe Thierry | |
| dc.contributor.author | González Sánchez, Mario | |
| dc.contributor.editor | Universidad de Valladolid. Escuela de Doctorado | |
| dc.date.accessioned | 2026-01-20T13:52:18Z | |
| dc.date.available | 2026-01-20T13:52:18Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/81884 | |
| dc.description.abstract | In this thesis, we study some interactions between commutative algebra and additive combinatorics. Based on recent works by Eliahou and Mazumdar, Elias, and Colarte-Gómez, Elias and Miró-Roig, we associate with each finite set A ⊂ ℕᵈ a projective toric variety X⊂ ℙₖⁿ, where k is an infinite field and n = |A|-1. We focus on the study of the sumsets of A and the Castelnuovo-Mumford regularity of [k], the coordinate ring of X. In particular, we look at the cases when X is a curve, a smooth variety, and a surface with a single singular point. Moreover, when X is a curve C, we study the relation between the Betti numbers of k [C] and its affine charts. Finally, we provide an explicit method to compute the minimal graded free resolution of R/I as A-module, where I ⊂ R = k[x₁,…,xₙ] is a weighted homogeneous ideal and A, the polynomial ring in the last d variables, is a Noether normalization of R/I. | en |
| dc.description.abstract | En esta tesis, estudiamos algunas interacciones entre el ´algebra conmutativa y la
combinatoria aditiva. Bas´andonos en los recientes trabajos de Eliahou [31], Elias
[32], y Colarte-G´omez, Elias y Mir´o-Roig [18], a cada conjunto finito A ⊂ Nd le
asociamos una variedad t´orica proyectiva X ⊂ Pn
k , donde k es un cuerpo infinito y
n = |A|−1. Nos centramos en el estudio de los conjuntos suma de A y la regularidad
de Castelnuovo-Mumford de k[X], el anillo de coordenadas de X. En particular, nos
fijamos en los casos en que X es una curva, una variedad lisa o una superficie con
un ´unico punto singular. Adem´as, cuando X es una curva C, estudiamos la relaci´on
entre los n´umeros de Betti de k[C] y sus cartas afines. Por ´ultimo, proporcionamos un
m´etodo expl´ıcito para construir la resoluci´on libre minimal graduada de R/I como
A-m´odulo, donde I ⊂ R = k[x1, . . . , xn] es un ideal homog´eneo para unos ciertos
pesos y A = k[xn−d+1, . . . , xn], suponiendo que las variables est´an en posici´on de
Noether. | es |
| dc.description.sponsorship | Escuela de Doctorado | |
| dc.format.mimetype | application/pdf | |
| dc.language.iso | spa | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject | Algebra | |
| dc.subject.classification | Graded free resolutions | |
| dc.subject.classification | Resoluciones libres graduadas | |
| dc.subject.classification | Additive combinatorics | |
| dc.subject.classification | Combinatoria aditiva | |
| dc.subject.classification | Castelnuovo-Mumford regularity | |
| dc.subject.classification | Regularidad | |
| dc.subject.classification | Conjuntos suma | |
| dc.subject.classification | Sumsets | |
| dc.title | Syzygies, regularity, and their interplay with additive combinatorics | |
| dc.type | info:eu-repo/semantics/doctoralThesis | |
| dc.date.updated | 2026-01-20T13:52:18Z | |
| dc.description.degree | Doctorado en Matemáticas | |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
| dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | |
| dc.subject.unesco | 12 Matemáticas | |