Show simple item record

dc.contributor.advisorDelgado de la Mata, Félix 
dc.contributor.advisorGarcía Marco, Ignacio
dc.contributor.advisorGiménez Martín, Philippe Thierry
dc.contributor.authorGonzález Sánchez, Mario 
dc.contributor.editorUniversidad de Valladolid. Escuela de Doctorado 
dc.date.accessioned2026-01-20T13:52:18Z
dc.date.available2026-01-20T13:52:18Z
dc.date.issued2025
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/81884
dc.description.abstractIn this thesis, we study some interactions between commutative algebra and additive combinatorics. Based on recent works by Eliahou and Mazumdar, Elias, and Colarte-Gómez, Elias and Miró-Roig, we associate with each finite set A ⊂ ℕᵈ a projective toric variety X⊂ ℙₖⁿ, where k is an infinite field and n = |A|-1. We focus on the study of the sumsets of A and the Castelnuovo-Mumford regularity of [k], the coordinate ring of X. In particular, we look at the cases when X is a curve, a smooth variety, and a surface with a single singular point. Moreover, when X is a curve C, we study the relation between the Betti numbers of k [C] and its affine charts. Finally, we provide an explicit method to compute the minimal graded free resolution of R/I as A-module, where I ⊂ R = k[x₁,…,xₙ] is a weighted homogeneous ideal and A, the polynomial ring in the last d variables, is a Noether normalization of R/I.en
dc.description.abstractEn esta tesis, estudiamos algunas interacciones entre el ´algebra conmutativa y la combinatoria aditiva. Bas´andonos en los recientes trabajos de Eliahou [31], Elias [32], y Colarte-G´omez, Elias y Mir´o-Roig [18], a cada conjunto finito A ⊂ Nd le asociamos una variedad t´orica proyectiva X ⊂ Pn k , donde k es un cuerpo infinito y n = |A|−1. Nos centramos en el estudio de los conjuntos suma de A y la regularidad de Castelnuovo-Mumford de k[X], el anillo de coordenadas de X. En particular, nos fijamos en los casos en que X es una curva, una variedad lisa o una superficie con un ´unico punto singular. Adem´as, cuando X es una curva C, estudiamos la relaci´on entre los n´umeros de Betti de k[C] y sus cartas afines. Por ´ultimo, proporcionamos un m´etodo expl´ıcito para construir la resoluci´on libre minimal graduada de R/I como A-m´odulo, donde I ⊂ R = k[x1, . . . , xn] es un ideal homog´eneo para unos ciertos pesos y A = k[xn−d+1, . . . , xn], suponiendo que las variables est´an en posici´on de Noether.es
dc.description.sponsorshipEscuela de Doctorado
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAlgebra
dc.subject.classificationGraded free resolutions
dc.subject.classificationResoluciones libres graduadas
dc.subject.classificationAdditive combinatorics
dc.subject.classificationCombinatoria aditiva
dc.subject.classificationCastelnuovo-Mumford regularity
dc.subject.classificationRegularidad
dc.subject.classificationConjuntos suma
dc.subject.classificationSumsets
dc.titleSyzygies, regularity, and their interplay with additive combinatorics
dc.typeinfo:eu-repo/semantics/doctoralThesis
dc.date.updated2026-01-20T13:52:18Z
dc.description.degreeDoctorado en Matemáticas
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dc.subject.unesco12 Matemáticas


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record