Afficher la notice abrégée

dc.contributor.authorVaca, César
dc.contributor.authorRomán-Gallego, Jesús-Ángel
dc.contributor.authorBarroso-García, Verónica
dc.contributor.authorTejerina, Fernando
dc.contributor.authorSahelices, Benjamín
dc.date.accessioned2026-01-23T12:57:11Z
dc.date.available2026-01-23T12:57:11Z
dc.date.issued2025
dc.identifier.citationVaca, C.; Román-Gallego, J.-Á.; Barroso-García, V.; Tejerina, F.; Sahelices, B. Concatenation Augmentation for Improving Deep Learning Models in Finance NLP with Scarce Data. Electronics 2025, 14, 2289. https://doi.org/10.3390/electronics14112289es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/82077
dc.description.abstractNowadays, financial institutions increasingly leverage artificial intelligence to enhance decision-making and optimize investment strategies. A specific application is the automatic analysis of large volumes of unstructured textual data to extract relevant information through deep learning (DL) methods. However, the effectiveness of these methods is often limited by the scarcity of high-quality labeled data. To address this, we propose a new data augmentation technique, Concatenation Augmentation (CA). This is designed to overcome the challenges of processing unstructured text, particularly in analyzing professional profiles from corporate governance reports. Based on Mixup and Label Smoothing Regularization principles, CA generates new text samples by concatenating inputs and applying a convex additive operator, preserving its spatial and semantic coherence. Our proposal achieved hit rates between 92.4% and 99.7%, significantly outperforming other data augmentation techniques. CA improved the precision and robustness of the DL models used for extracting critical information from corporate reports. This technique offers easy integration into existing models and incurs low computational costs. Its efficiency facilitates rapid model adaptation to new data and enhances overall precision. Hence, CA would be a potential and valuable data augmentation tool for boosting DL model performance and efficiency in analyzing financial and governance textual data.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPI Electronicses
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleConcatenation Augmentation for Improving Deep Learning Models in Finance NLP with Scarce Dataes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.3390/electronics14112289es
dc.identifier.publicationfirstpage2289es
dc.identifier.publicationissue11es
dc.identifier.publicationtitleElectronicses
dc.identifier.publicationvolume14es
dc.peerreviewedSIes
dc.identifier.essn2079-9292es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée