Mostrar el registro sencillo del ítem

dc.contributor.authorHallin, Marc
dc.contributor.authordel Barrio, Eustasio
dc.contributor.authorCuesta-Albertos, Juan
dc.contributor.authorMatrán, Carlos
dc.date.accessioned2026-01-23T19:05:53Z
dc.date.available2026-01-23T19:05:53Z
dc.date.issued2021
dc.identifier.citationThe Annals of Statistics, April, 2021, Vol. 49, nº 2, 1139-1165.es
dc.identifier.issn0090-5364es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/82097
dc.descriptionProducción Científicaes
dc.description.abstractUnlike the real line, the real space Rd , for d ≥ 2, is not canonically ordered. As a consequence, such fundamental univariate concepts as quantile and distribution functions and their empirical counterparts, involving ranks and signs, do not canonically extend to the multivariate context. Palliating that lack of a canonical ordering has been an open problem for more than half a century, generating an abundant literature and motivating, among others, the development of statistical depth and copula-based methods. We show that, unlike the many definitions proposed in the literature, the measure transportation-based ranks and signs introduced in Chernozhukov, Galichon, Hallin and Henry (Ann. Statist. 45 (2017) 223–256) enjoy all the properties that make univariate ranks a successful tool for semiparametric inference. Related with those ranks, we propose a new center-outward definition of multivariate distribution and quantile functions, along with their empirical counterparts, for which we establish a Glivenko–Cantelli result. Our approach is based on McCann (Duke Math. J. 80 (1995) 309–323) and our results do not require any moment assumptions. The resulting ranks and signs are shown to be strictly distribution-free and essentially maximal ancillary in the sense of Basu (Sankhya 21 (1959) 247–256) which, in semiparametric models involving noise with unspecified density, can be interpreted as a finite-sample form of semiparametric efficiency. Although constituting a sufficient summary of the sample, empirical center-outward distribution functions are defined at observed values only. A continuous extension to the entire d-dimensional space, yielding smooth empirical quantile contours and sign curves while preserving the essential monotonicity and Glivenko–Cantelli features of the concept, is provided. A numerical study of the resulting empirical quantile contours is conducted.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subjectEstadísticaes
dc.subject.classificationancillarity , Basu theorem , cyclical monotonicity , distribution-freeness , Glivenko–Cantelli theorem , multivariate distribution function , Multivariate quantiles , multivariate ranks , multivariate signses
dc.titleDistribution and quantile functions, ranks and signs in dimension d: A measure transportation approaches
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderInstitute of Mathematical Statisticses
dc.identifier.doi10.1214/20-AOS1996es
dc.relation.publisherversionhttps://projecteuclid.org/journals/annals-of-statistics/volume-49/issue-2/Distribution-and-quantile-functions-ranks-and-signs-in-dimension-d/10.1214/20-AOS1996.fulles
dc.identifier.publicationfirstpage1139es
dc.identifier.publicationissue2es
dc.identifier.publicationlastpage1164es
dc.identifier.publicationtitleThe Annals of Statisticses
dc.identifier.publicationvolume49es
dc.peerreviewedSIes
dc.description.projectEste trabajo forma parte del proyecto de investigación: FEDER, Spanish Ministerio de Economía y Competitividad, grant MTM2017-86061-C2 y Junta de Castilla y León, grants VA005P17 y VA002G18es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem