Afficher la notice abrégée

dc.contributor.authorPeláez-Rodríguez, César
dc.contributor.authorMagdaleno, Álvaro
dc.contributor.authorGarcía Terán, José María 
dc.contributor.authorPérez-Aracil, Jorge
dc.contributor.authorSalcedo-Sanz, Sancho
dc.contributor.authorLorenzana, Antolín
dc.date.accessioned2026-01-23T19:54:05Z
dc.date.available2026-01-23T19:54:05Z
dc.date.issued2024
dc.identifier.citationHeliyon, Junio, 2025es
dc.identifier.issn2405-8440es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/82103
dc.descriptionProducción Científicaes
dc.description.abstractHuman-induced force analysis plays an important role across a wide range of disciplines, including biomechanics, sport engineering, health monitoring or structural engineering. Specifically, this paper focuses on the replication of ground reaction forces (GRF) generated by humans during movement. They can provide critical information about human-mechanics and be used to optimize athletic performance, prevent and rehabilitate injuries and assess structural vibrations in engineering applications. It is presented an experimental approach that uses an electrodynamic shaker (APS 400) to replicate GRFs generated by humans during movement, with a high degree of accuracy. Successful force reconstruction implies a high fidelity in signal reproduction with the electrodynamic shaker, which leads to an inverse problem, where a reference signal must be replicated with a nonlinear and non-invertible system. The solution presented in this paper relies on the development of an iterative neural network and an inversion-free approach, which aims to generate the most effective drive signal that minimizes the error between the experimental force signal exerted by the shaker and the reference. After the optimization process, the weights of the neural network are updated to make the shaker behave as desired, achieving excellent results in both time and frequency domains.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevier Ltd.es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subject.classificationForces reconstruction Human-induced forces Artificial neural networks Electrodynamic shaker Ground reaction forceses
dc.titleAn iterative neural network approach applied to human-induced force reconstruction using a non-linear electrodynamic shakeres
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.heliyon.2024.e32858es
dc.identifier.publicationfirstpagee32858es
dc.identifier.publicationissue12es
dc.identifier.publicationtitleHeliyones
dc.identifier.publicationvolume10es
dc.peerreviewedSIes
dc.description.projectLos autores desean expresar su agradecimiento a la AEI, Gobierno de España (10.13039/501100011033) y a “FEDER Una manera de hacer Europa”, por el apoyo parcial a través de la subvención PID2022-140117NB-I00. Esta investigación también ha sido apoyada parcialmente por el proyecto PID2020-115454GB-C21 del Ministerio de Ciencia e Innovación de España (MICINN).es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée