Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82104
Título
Generating vertical ground reaction forces using a stochastic data-driven model for pedestrian walking
Autor
Año del Documento
2025
Editorial
Elsevier B.V.
Descripción
Producción Científica
Documento Fuente
Journal of Computational Science, Abril, 2025
Resumo
A novel time-domain approach to the characterization of the forces induced by a pedestrian is proposed.
It focuses on the vertical component while walking, but thanks to how it is conceived, the algorithm can
be easily adapted to other activities or any other force component. The work has been developed from
the statistical point of view, so a stochastic data-driven model is finally obtained after the algorithm is
applied to a set of experimentally measured steps. The model is composed of two mean vectors and their
corresponding covariance matrices to represent the steps, as well as some more means and standard deviations
to account for the step scaling and double support phase, under the assumption that the random variables
follow normal distributions. Velocity and step length are also provided, so the model and the latter data enable
the realistic generation of virtual gaits. Some application examples at different walking paces are shown, in
which comparisons between the original steps and a set of virtual ones are performed to show the similarities
between both. For reproducibility purposes, the data and the developed algorithm have been made available.
Palabras Clave
Human loading Walking load model Stochastic data-driven model Virtual GRFs
ISSN
1877-7503
Revisión por pares
SI
Patrocinador
Financiación: Este trabajo fue apoyado por la Agencia Estatal de Investigación de España (AEI) y FEDER ‘‘ERDF Una manera de hacer Europa’’ (MICIU/AEI/10.13039/501100011033) [número de beca PID2022-140117NB-I00]; y NextGenerationEU ‘‘Programa InvestigO’’ [número de beca CP23-174].
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Tamaño:
6.372Mb
Formato:
Adobe PDF
Descripción:
Artículo principal










