Show simple item record

dc.contributor.authorFernández, Guillermo
dc.contributor.authorGarcía-Terán, José María
dc.contributor.authorIglesias-Pordomingo, Álvaro
dc.contributor.authorPeláez-Rodríguez, César
dc.contributor.authorLorenzana, Antolin
dc.contributor.authorMagdaleno, Alvaro
dc.date.accessioned2026-01-23T20:00:01Z
dc.date.available2026-01-23T20:00:01Z
dc.date.issued2025
dc.identifier.citationMDPI, 2025es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/82106
dc.descriptionProducción Científicaes
dc.description.abstractThis work presents a time-domain approach for characterizing the Ground Reaction Forces (GRFs) exerted by a pedestrian during running. It is focused on the vertical component, but the methodology is adaptable to other components or activities. The approach is developed from a statistical perspective. It relies on experimentally measured force-time series obtained from a healthy male pedestrian at eight step frequencies ranging from 130 to 200 steps/min. These data are subsequently used to build a stochastic data-driven model. The model is composed of multivariate normal distributions which represent the step patterns of each foot independently, capturing potential disparities between them. Additional univariate normal distributions represent the step scaling and the aerial phase, the latter with both feet off the ground. A dimensionality reduction procedure is also implemented to retain the essential geometric features of the steps using a sufficient set of random variables. This approach accounts for the intrinsic variability of running gait by assuming normality in the variables, validated through state-of-the-art statistical tests (Henze-Zirkler and Shapiro-Wilk) and the Box-Cox transformation. It enables the generation of virtual GRFs using pseudo-random numbers from the normal distributions. Results demonstrate strong agreement between virtual and experimental data. The virtual time signals reproduce the stochastic behavior, and their frequency content is also captured with deviations below 4.5%, most of them below 2%. This confirms that the method effectively models the inherent stochastic nature of running human gait.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subject.classificationhuman loading; running forces model; stochastic data-driven model; reduced model; virtual GRFses
dc.titleA Reduced Stochastic Data-Driven Approach to Modelling and Generating Vertical Ground Reaction Forces During Runninges
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.3390/modelling6040144es
dc.relation.publisherversionhttps://creativecommons.org/ licenses/by/4.0/es
dc.identifier.publicationfirstpage144es
dc.identifier.publicationissue4es
dc.identifier.publicationtitleModellinges
dc.identifier.publicationvolume6es
dc.peerreviewedSIes
dc.description.projectEsta investigación fue financiada por la Agencia Estatal de Investigación de España (MICIU/AEI/10.13039/501100011033) y FEDER “Fondo Europeo de Desarrollo Regional: Una manera de hacer Europa”, número de subvención PID2022-140117NBI00. La investigación también fue financiada por la beca del programa InvestigO de Guillermo Fernández (CP23-174), financiada por la UE, NextGenerationEU y por el Ministerio de Universidades del Gobierno de España, a través de la beca predoctoral de Álvaro Iglesias número FPU21/03999.es
dc.identifier.essn2673-3951es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record