Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82164
Título
Comparative evaluation of monocular deep learning pose estimation and IMU-based systems for remote kinematic assessment
Autor
Año del Documento
2025
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Gait & Posture, 121. doi.org/10.1016/j.gaitpost.2025.07.234
Abstract
Remote assessment of human motion is increasingly pivotal in clinical, sports, and rehabilitation contexts, particularly given the rise of telemedicine. While traditional motion capture systems deliver high-precision data, their dependence on expensive equipment and controlled laboratory conditions limits their broader application. Advances in computer vision have enabled the development of monocular video-based 3D human pose estimation methods, which leverage ubiquitous camera technologies to offer cost-effective and accessible kinematic analysis. This study systematically benchmarks joint angles derived from both video-based models and IMUs, addressing the gap in comparative evaluations under realistic, out-of-the-lab conditions
ISSN
0966-6362
Revisión por pares
SI
Patrocinador
This research was partially funded by the Ministry of Science and Innovation of Spain under research grant “Rehabot: Smart assistant to complement and assess the physical rehabilitation of children with cerebral palsy in their natural environment”, with code 124515OA-100, and the Gerencia Regional de Salud de Castilla y León under research grant "Terapia personalizada guiada con chatbot en domicilio post-tratamiento para la espasticidad en pacientes con ictus y parálisis cerebral y valoración con electromiografía superficial, visión artificial y sensores vestibles”, with code GRS 3159/A1/2024.
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
embargoedAccess
Aparece en las colecciones
Files in questo item
Nombre:
1-s2.0-S0966636225004904-main.pdfEmbargado hasta: 9999-01-01
Tamaño:
952.7Kb
Formato:
Adobe PDF







