Mostrar el registro sencillo del ítem
| dc.contributor.author | Abia Llera, Luis María | |
| dc.contributor.author | Angulo Torga, Óscar | |
| dc.contributor.author | López Marcos, Juan Carlos | |
| dc.date.accessioned | 2026-01-28T18:57:56Z | |
| dc.date.available | 2026-01-28T18:57:56Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Chaos, Solitons and Fractals, 2025, vol 191, n 115844 | es |
| dc.identifier.issn | 0960-0779 | es |
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/82304 | |
| dc.description | Producción Científica | es |
| dc.description.abstract | We consider the numerical approximation of the asymptotic behavior of an age-structured compartmental population model for the dynamics of the sexual phase of Monogonont rotifera. To cope with the difficulties of the infinite lifespan in long-time simulations, the main approach introduces a second order numerical discretization of a reformulation of the model problem in terms of a new computational size variable that evolves with age. The main contribution is to establish second order of convergence of the steady-state solutions of the discrete equations to the theoretical steady states of the continuous age-structured population model. Moreover, we report numerical evidence of a threshold for the male–female encounter rate parameter in the model after which the steady solution becomes unstable and a stable limit cycle appears in the dynamics. Finally, we confirm the effectiveness of the numerical technique we propose, when considering long-time integration of age-structured population models with infinite lifespan. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | spa | es |
| dc.publisher | Elsevier | es |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
| dc.subject.classification | Age-structured population model | es |
| dc.subject.classification | Continuous–discrete dynamics | es |
| dc.subject.classification | Asymptotic behavior | es |
| dc.subject.classification | Monogonont rotifera | es |
| dc.subject.classification | Numerical methods | es |
| dc.subject.classification | Unbounded age | es |
| dc.title | Numerical approximation and convergence to steady state solutions of a model for the dynamics of the sexual phase of Monogonont rotifera | es |
| dc.type | info:eu-repo/semantics/article | es |
| dc.identifier.doi | 10.1016/j.chaos.2024.115844 | es |
| dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0960077924013961?via%3Dihub | es |
| dc.identifier.publicationfirstpage | 115844 | es |
| dc.identifier.publicationtitle | Chaos, Solitons & Fractals | es |
| dc.identifier.publicationvolume | 191 | es |
| dc.peerreviewed | SI | es |
| dc.description.project | Este trabajo forma parte de los proyectos de investigación: PID2020-113554GBI00/ AEI/10.13039/501100011033 de la AEI y RED202-134784-T by MCIN/AEI/10.13039/ 501100011033. | es |
| dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | es |
| dc.subject.unesco | 1206.13 Ecuaciones Diferenciales en Derivadas Parciales | es |




