Afficher la notice abrégée

dc.contributor.authorAbia Llera, Luis María 
dc.contributor.authorAngulo Torga, Óscar 
dc.contributor.authorLópez Marcos, Juan Carlos 
dc.contributor.authorLópez Marcos, Miguel Ángel 
dc.date.accessioned2026-01-28T19:15:36Z
dc.date.available2026-01-28T19:15:36Z
dc.date.issued2020
dc.identifier.citationMathematics, 2020, vol. 8, n. 1440es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/82306
dc.descriptionProducción Científicaes
dc.description.abstractIn this paper, we go through the development of a new numerical method to obtain the solution to a size-structured population model that describes the evolution of a consumer feeding on a dynamical resource that reacts to the environment with a lag-time response. The problem involves the coupling of the partial differential equation that represents the population evolution and an ordinary differential equation with a constant delay that describes the evolution of the resource. The numerical treatment of this problem has not been considered before when a delay is included in the resource evolution rate. We analyzed the numerical scheme and proved a second-order rate of convergence by assuming enough regularity of the solution. We numerically confirmed the theoretical results with an academic test problem.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherMPDIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subject.classificationdelay differential equationes
dc.subject.classificationnumerical methodses
dc.subject.classificationcharacteristics methodes
dc.subject.classificationsize-structured populationes
dc.subject.classificationconsumer-resource modeles
dc.titleThe Convergence Analysis of a Numerical Method for a Structured Consumer-Resource Model with Delay in the Resource Evolution Ratees
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.3390/math8091440es
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/8/9/1440es
dc.identifier.publicationfirstpage1440es
dc.identifier.publicationtitleMathematicses
dc.identifier.publicationvolume8es
dc.peerreviewedSIes
dc.description.projectEste trabajo forma parte del proyecto de investigación: MTM2017-85476-C2-1-P del MEC-FEDER y VA138G18 de la JCyLes
dc.identifier.essn2227-7390es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1206.13 Ecuaciones Diferenciales en Derivadas Parcialeses


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée