| dc.contributor.author | Abia Llera, Luis María | |
| dc.contributor.author | Angulo Torga, Óscar | |
| dc.contributor.author | López Marcos, Juan Carlos | |
| dc.contributor.author | López Marcos, Miguel Ángel | |
| dc.date.accessioned | 2026-01-28T19:15:36Z | |
| dc.date.available | 2026-01-28T19:15:36Z | |
| dc.date.issued | 2020 | |
| dc.identifier.citation | Mathematics, 2020, vol. 8, n. 1440 | es |
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/82306 | |
| dc.description | Producción Científica | es |
| dc.description.abstract | In this paper, we go through the development of a new numerical method to obtain the
solution to a size-structured population model that describes the evolution of a consumer feeding on a
dynamical resource that reacts to the environment with a lag-time response. The problem involves the
coupling of the partial differential equation that represents the population evolution and an ordinary
differential equation with a constant delay that describes the evolution of the resource. The numerical
treatment of this problem has not been considered before when a delay is included in the resource
evolution rate. We analyzed the numerical scheme and proved a second-order rate of convergence by
assuming enough regularity of the solution. We numerically confirmed the theoretical results with an
academic test problem. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | spa | es |
| dc.publisher | MPDI | es |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
| dc.subject.classification | delay differential equation | es |
| dc.subject.classification | numerical methods | es |
| dc.subject.classification | characteristics method | es |
| dc.subject.classification | size-structured population | es |
| dc.subject.classification | consumer-resource model | es |
| dc.title | The Convergence Analysis of a Numerical Method for a Structured Consumer-Resource Model with Delay in the Resource Evolution Rate | es |
| dc.type | info:eu-repo/semantics/article | es |
| dc.identifier.doi | 10.3390/math8091440 | es |
| dc.relation.publisherversion | https://www.mdpi.com/2227-7390/8/9/1440 | es |
| dc.identifier.publicationfirstpage | 1440 | es |
| dc.identifier.publicationtitle | Mathematics | es |
| dc.identifier.publicationvolume | 8 | es |
| dc.peerreviewed | SI | es |
| dc.description.project | Este trabajo forma parte del proyecto de investigación: MTM2017-85476-C2-1-P del MEC-FEDER y VA138G18 de la JCyL | es |
| dc.identifier.essn | 2227-7390 | es |
| dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
| dc.subject.unesco | 1206.13 Ecuaciones Diferenciales en Derivadas Parciales | es |