• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería Energética y Fluidomecánica
    • DEP46 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería Energética y Fluidomecánica
    • DEP46 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82345

    Título
    An Accurate Thermodynamic Model to Characterise Dissociating N2O4 at Vapour–Liquid Equilibrium States
    Autor
    Samukov, Konstantin
    Vega Maza, DavidAutoridad UVA Orcid
    Lemmon, Eric W.
    Diky, Vladimir
    Lasala, Silvia
    Año del Documento
    2025
    Editorial
    Springer Nature
    Documento Fuente
    International Journal of Thermophysics, Mayo 2025, vol. 47, n. 45, p. 1-28
    Resumo
    A new thermodynamic model is presented, capable of accurately representing the vapour–liquid equilibrium pressures and densities, and liquid phase densities and enthalpies of dissociating dinitrogen tetroxide (N2O4 ⇄ 2NO2). The model is based on the Peng-Robinson equation of state coupled with advanced mixing rules. The -required but non-measurable- critical coordinates of the pure components forming the reactive mixtures are optimized, within a variability range defined in a previous study, to fit experimental vapour–liquid equilibrium data. The optimized parameters are then validated by comparing calculated thermodynamic properties with available experimental data in the subcritical region. The negligible impact of the higher temperature reaction 2NO2 ⇄ 2NO + O2, within the vapour–liquid equilibrium region where the optimisation is performed, is also proven. The resulting model is finally compared with the currently most accurate available equation of state, showing comparable results when considered both the scatter in available experimental data and the relative simplicity of the proposed equation of state. In particular, the proposed model demonstrates the satisfactory capability of a cubic equation of state to accurately reproduce both saturation pressures and saturation densities without requiring volume translation.
    ISSN
    0195-928X
    Revisión por pares
    SI
    DOI
    10.1007/s10765-025-03565-x
    Patrocinador
    European Research Council (grant agreement No. 101040994)
    Version del Editor
    https://link.springer.com/article/10.1007/s10765-025-03565-x#Fun
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/82345
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP46 - Artículos de revista [120]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    NO2 N2O4 Thermodynamic Model 2025.pdf
    Tamaño:
    1.676Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10