Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82398
Título
Central limit theorems for general transportation costs
Año del Documento
2024
Descripción
Producción Científica
Documento Fuente
Annales de l’Institut Henri Poincaré – Probablités & Statististique. 60(2): 847-873.
Resumo
We consider the problem of optimal transportation with general cost between an empirical measure and a general target probability on Rd , with d ≥ 1. We provide results on asymptotic stability of optimal transport potentials under minimal regularity assumptions on the costs or the underlying probability. This stability is combined with a refined linearization technique based on the sequential compactness of the closed unit ball in L2(P ) for the weak topology and the strong convergence of Cesàro means along subsequences. As a result we obtain a CLT for the transportation cost under sharp smoothness and moment assumptions, giving a positive answer to a conjecture in (Ann. Probab. 47 (2019) 926–951) for the quadratic costs.
Materias (normalizadas)
Estadística
Probabilidad
Palabras Clave
Optimal transport; Banach–Saks property; CLT; Efron–Stein’s inequality; Cesàro means
ISSN
0246-0203
Revisión por pares
SI
Patrocinador
FEDER, Ministerio de Economía y Competitividad, grant MTM2017-86061-C2-1-P y Junta de Castilla y León, grants VA005P17 and VA002G18.
Propietario de los Derechos
Association des Publications de l’Institut Henri Poincaré
Idioma
spa
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Arquivos deste item








