Zur Kurzanzeige

dc.contributor.authordel Barrio, Eustasio
dc.contributor.authorGonzález-Sanz, Alberto
dc.contributor.authorHallin, Marc
dc.date.accessioned2026-01-30T11:10:18Z
dc.date.available2026-01-30T11:10:18Z
dc.date.issued2020
dc.identifier.citationJournal of Multivariate Analysis, Volume 180, 2020, 104671es
dc.identifier.issn0047-259Xes
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/82401
dc.descriptionProducción Científicaes
dc.description.abstractWe provide sufficient conditions under wich the center-outward distribution and quantile func- tions introduced in Chernozhukov et al. (2017) and Hallin (2017) are homeomorphisms, thereby extending a recent result by Figalli [12]. Our approach relies on Cafarelli’s classical regularity theory for the solutions of the Monge-Amp`ere equation, but has to deal with difficulties related with the unboundedness at the origin of the density of the spherical uniform reference measure. Our conditions are satisfied by probabillities on Euclidean space with a general (bounded or un- bounded) convex support which are not covered in [12]. We provide some additional results about center-outward distribution and quantile functions, including the fact that quantile sets exhibit some weak form of convexity.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.subjectEstadísticaes
dc.subjectAnálisis Matemáticoes
dc.titleA note on the regularity of optimal-transport-based center-outward distribution and quantile functionses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderElsevieres
dc.identifier.doi10.1016/j.jmva.2020.104671es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0047259X20302529?via%3Dihub#d1e19913es
dc.identifier.publicationfirstpage104671es
dc.identifier.publicationtitleJournal of Multivariate Analysises
dc.identifier.publicationvolume180es
dc.peerreviewedSIes
dc.description.projectFEDER, Spanish Ministerio de Economía y Competitividad, Grant MTM2017-86061-C2-1-P and Junta de Castilla y León, Grants VA005P17 and VA002G18.es
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige