• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Construcciones Arquitectónicas, Ingeniería del Terreno y Mecánica de los Medios Continuos ...
    • DEP43 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Construcciones Arquitectónicas, Ingeniería del Terreno y Mecánica de los Medios Continuos ...
    • DEP43 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82402

    Título
    Application of Deep Neural Networks for Leakage Airflow Rate Estimation From Three‐Dimensional Thermal Patterns
    Autor
    Tamayo-Alonso, Diego
    Poza-Casado, Irene
    Meiss, Alberto
    Año del Documento
    2026-01-29
    Editorial
    John Wiley & Sons A/S
    Descripción
    Producción Científica
    Documento Fuente
    Tamayo-Alonso, D., Poza-Casado, I., & Meiss, A. (2025). Application of Deep Neural Networks for Leakage Airflow Rate Estimation From Three-Dimensional Thermal Patterns. Indoor Air, 2026(1), 5960599. https://doi.org/10.1155/ina/5960599
    Resumo
    The employment of deep convolutional neural networks (CNNs) signifies a substantial progression in the domain of image analysis. The application of this method is particularly suitable when the image set represents a spatial structure and predictive analysis can only be performed using Gaussian processes, which are computationally complex. The uncontrolled airflow of air into buildings, known as infiltration, poses a significant challenge in terms of characterisation and quantification. The irregular contours of gaps and cracks through the enclosure create a virtually endless variety of cases, making a generalizable scientific interpretation that can be applied to existing buildings very difficult. This circumstance is always clearly manifested by an irregular, three-dimensional incoming airflow. This study presents an innovative methodology for estimating airflow rates based on three-dimensional thermal patterns captured through infrared thermography. The experimental setup employs a 3D-printed matrix of spheres, facilitating the characterisation of the spatial temperature distribution within the airflow. The resulting thermal images are processed using a CNNs, which integrates the spatial information contained in the thermograms with a scalar input representing the inlet air temperature. The model′s performance was assessed under a range of conditions, including reduced image resolutions, varying experimental configurations (involving different flow apertures) and a comparison between full thermographic inputs and thermal difference-based features. The results indicate that the model can accurately infer airflow rates within the same aperture (medium absolute error [MAE] < 2%). While generalisation to new apertures presents a greater challenge, the experiments demonstrate that a sufficiently diverse training dataset can enhance the model′s predictive capacity for configurations not included in the training phase. These findings underscore the potential of deep learning as a nonintrusive and efficient tool for estimating airflow in systems where conventional measurement techniques are either difficult to apply or impractical.
    Palabras Clave
    building airtightness
    deep convolutional neural network
    infiltration
    pressurisation test
    thermography
    ISSN
    0905-6947
    Revisión por pares
    SI
    DOI
    10.1155/ina/5960599
    Patrocinador
    Ministerio de Ciencia e Innovación (10.13039/100014440) (PID2022-142104OB-I00)
    Version del Editor
    https://onlinelibrary.wiley.com/doi/10.1155/ina/5960599
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/82402
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP43 - Artículos de revista [85]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Indoor Air - 2026 - Tamayo-Alonso - Application of Deep Neural Networks for Leakage Airflow Rate Estimation From.pdf
    Tamaño:
    3.469Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10