Mostrar el registro sencillo del ítem
| dc.contributor.author | Almirón, Patricio | |
| dc.contributor.author | Moyano Fernández, Julio José | |
| dc.date.accessioned | 2026-02-03T13:46:35Z | |
| dc.date.available | 2026-02-03T13:46:35Z | |
| dc.date.issued | 2026 | |
| dc.identifier.citation | Revista Matemática Complutense, 2026, vol. 39, n. 1. | es |
| dc.identifier.issn | 1139-1138 | es |
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/82489 | |
| dc.description | Producción Científica | es |
| dc.description.abstract | The aim of this paper is to provide an explicit basis of the miniversal deformation of a monomial curve defined by a free semigroup—these curves make up a notable family of complete intersection monomial curves. First, we dispense a general decomposition result of a basis B of the miniversal deformation of any complete intersection monomial curve. As a consequence, we explicitly calculate B in the particular case of a monomial curve defined from a free semigroup. This direct computation yields some estimates for the dimension of the moduli space of the family The aim of this paper is to provide an explicit basis of the miniversal deformation of a monomial curve defined by a free semigroup—these curves make up a notable family of complete intersection monomial curves. First, we dispense a general decomposition result of a basis B of the miniversal deformation of any complete intersection monomial curve. As a consequence, we explicitly calculate B in the particular case of a monomial curve defined from a free semigroup. This direct computation yields some estimates for the dimension of the moduli space of the family C. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | eng | es |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject | Geometría algebraica | es |
| dc.subject | Curvas monomiales | es |
| dc.subject | Teoría de deformaciones | es |
| dc.subject.classification | Curvas monomiales | es |
| dc.subject.classification | Intersección completa | es |
| dc.subject.classification | Teoría de deformación | es |
| dc.subject.classification | Espacio de moduli | es |
| dc.subject.classification | Singularidades de curvas | es |
| dc.title | The miniversal deformation of certain complete intersection monomial curves | es |
| dc.type | info:eu-repo/semantics/article | es |
| dc.rights.holder | © 2026 The Author(s) | es |
| dc.identifier.doi | 10.1007/s13163-025-00560-6 | es |
| dc.relation.publisherversion | https://link.springer.com/article/10.1007/s13163-025-00560-6 | es |
| dc.identifier.publicationissue | 1 | es |
| dc.identifier.publicationtitle | Revista Matemática Complutense | es |
| dc.identifier.publicationvolume | 39 | es |
| dc.peerreviewed | SI | es |
| dc.description.project | Ministerio de Ciencia e Innovación (MCIN) / Agencia Estatal de Investigación (AEI): PID2022-138906NB-C22 (MCIN/AEI/10.13039/501100011033 / FEDER, EU) | es |
| dc.description.project | Ministerio de Ciencia, Innovación y Universidades (MICIU) / Agencia Estatal de Investigación (AEI): PID2020-114750GB-C32 (MICIU/AEI/10.13039/501100011033) | es |
| dc.description.project | Ministerio de Ciencia, Innovación y Universidades (MICIU) / Agencia Estatal de Investigación (AEI): contrato posdoctoral Ramón y Cajal de Patricio Almirón Cuadros (RYC2021-034300-I) | es |
| dc.description.project | Universitat Jaume I: UJI-B2021-02, GACUJIMA/2023/06 y GACUJIMB/2023/03 | es |
| dc.description.project | Open access funding provided by FEDER European Funds and the Junta de Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027. | es |
| dc.identifier.essn | 1988-2807 | es |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
| dc.subject.unesco | 1201 Álgebra | es |
| dc.subject.unesco | 1202 Análisis y Análisis Funcional | es |
| dc.subject.unesco | 1204 Geometría | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional




