• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Ingeniería Química y Tecnología del Medio Ambiente
    • DEP48 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Ingeniería Química y Tecnología del Medio Ambiente
    • DEP48 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82705

    Título
    Predicting energy performance of the drinking water treatment process and its determinants
    Autor
    Maziotis, Alexandros
    Molinos-Senante, Maria
    Año del Documento
    2024
    Descripción
    Producción Científica
    Documento Fuente
    Blue Green Systems, 6(2), 232–246.
    Zusammenfassung
    Within the global climate change framework, enhancing energy efficiency presents a significant challenge for water utilities. Drinking water treatment is energy-intensive, involving several physicochemical processes to remove multiple pollutants from raw water. This study employs artificial neural networks (ANNs) and decision tree methods to gain a deeper understanding of the water-energy nexus in drinking water treatment processes. The energy efficiency of a sample of Chilean drinking water treatment plants (DWTPs) was estimated, resulting in an average score of 0.343. This indicates that on average, DWTPs could potentially save 65.7% of their current energy consumption if they were operating at an efficient level while producing the same quantity and quality of drinking water. The main source of raw water and the technology for treating water have been identified as critical factors influencing energy efficiency. Specifically, using surface water for producing drinking water, energy efficiency can increase to 0.514, whereas using groundwater would regress energy efficiency to 0.240. The use of predictive tools such as ANNs provides relevant information to support decision-making processes for a transition toward a sustainable urban water cycle
    Revisión por pares
    SI
    DOI
    10.2166/bgs.2024.009
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/82705
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP48 - Artículos de revista [297]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    11) bgs.pdf
    Tamaño:
    568.8Kb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10