Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/82809
Título
Dynamic cell culturing and its application to micropatterned, elastin-like protein-modified poly(N-isopropylacrylamide) scaffolds
Año del Documento
2009
Editorial
Elsevier
Documento Fuente
Biomaterials Volume 30, Issue 29, October 2009, Pages 5417-5426
Zusammenfassung
In this study a tissue engineering scaffold was constructed from poly(N-isopropylacrylamide) (pNIPAM) to study the influence of strain on cell proliferation and differentiation. The effect of surface chemistry and topography on bone marrow mesenchymal stem cells was also investigated. Micropatterned pNIPAM films (channels with 10 μm groove width, 2 μm ridge width, 20 μm depth) were prepared by photopolymerization. The films were chemically modified by adsorption of a genetically engineered and temperature sensitive elastin-like protein (ELP). Dynamic conditions were generated by repeated temperature changes between 29 °C and 37 °C. ELP presence on the films enhanced initial cell attachment two fold (Day 1 cell number on films with ELP and without ELP were 27.6 × 104 and 13.2 × 104, respectively) but had no effect on proliferation in the long run. ELP was crucial for maintaining the cells attached on the surface in dynamic culturing (Day 7 cell numbers on the films with and without ELP were 81.4 × 104 and 12.1 × 104, respectively) and this enhanced the ability of pNIPAM films to transfer mechanical stress on the cells. Dynamic conditions improved cell proliferation (Day 21 cell numbers with dynamic and with static groups were 180.4 × 104 and 157.7 × 104, respectively) but decreased differentiation (Day 14 specific ALP values on the films of static and dynamic groups were 6.6 and 3.5 nmol/min/cell, respectively). Thus, a physically and chemically modified pNIPAM scaffold had a positive influence on the population of the scaffolds under dynamic culture conditions.
ISSN
0142-9612
Revisión por pares
SI
Patrocinador
This study was supported by a grant from METU Graduate School of Natural and Applied Sciences (BAP-2006-07-02-00-01), EU FP6 project BioPolySurf, MICINN (projects MAT 2007-66275-C02-01 and NAN2004-08538), the JCyL (projects VA087A06, VA030/08 and VA030A08), the Ciber-BBN (project CB06-01-0003), and the JCyL and the Instituto de Salud Carlos III under the “Network Center of Regenerative medicine and Cellular Therapy of Castilla and León”and a scholarship to N.O. by the State Planning Organization (BAP 08-01-DPT2003K.120920-20).
Idioma
eng
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource








