2022-12-08T10:47:50Zhttps://uvadoc.uva.es/oai/requestoai:uvadoc.uva.es:10324/379372021-06-23T10:07:15Zcom_10324_1146com_10324_931com_10324_894col_10324_1262
An analysis of Winsorized weighted means
Llamazares Rodríguez, Bonifacio
Winsorized weighted means
Winsorized means
Choquet integral
Shapley values
SUOWA operators
Producción Científica
The Winsorized mean is a well-known robust estimator of the population mean. It can also be seen as a symmetric aggregation function (in fact, it is an ordered weighted averaging operator), which means that the information sources (for instance, criteria or experts’ opinions) have the same importance. However, in many practical applications (for instance, in many multiattribute decision making problems) it is necessary to consider that the information sources have different importance. For this reason, in this paper we propose a natural generalization of the Winsorized means so that the sources of information can be weighted differently. The new functions, which we will call Winsorized weighted means, are a specific case of the Choquet integral and they are analyzed through several indices for which we give closed-form expressions: the orness degree, k-conjunctiveness and k-disjunctiveness indices, veto and favor indices, Shapley values and interaction indices. We also provide a closed-form expression for the Möbius transform and we show how we can aggregate data so that each information source has the desired weighting and outliers have no influence in the aggregated value.
Este trabajo forma parte del proyecto de investigación: MEC-FEDER Grant ECO2016-77900-P
2019-09-14T08:47:55Z
2019-09-14T08:47:55Z
2019
info:eu-repo/semantics/article
info:eu-repo/semantics/acceptedVersion
Group Decision and Negotiation, 2019, vol. 28, n. 5, 907-933.
0926-2644
http://uvadoc.uva.es/handle/10324/37937
10.1007/s10726-019-09623-8
907
5
933
Group Decision and Negotiation
28
1572-9907
eng
https://link.springer.com/article/10.1007%2Fs10726-019-09623-8
info:eu-repo/semantics/openAccess
application/pdf
Springer
https://uvadoc.uva.es/bitstream/10324/37937/3/2019GDN.pdf.jpg
Hispana
TEXT
http://rightsstatements.org/vocab/CNE/1.0/
UVaDOC. Repositorio Documental de la Universidad de Valladolid
http://uvadoc.uva.es/handle/10324/37937