RT info:eu-repo/semantics/article T1 Robust estimation for mixtures of Gaussian factor analyzers, based on trimming and constraints A1 García Escudero, Luis Ángel A1 Gordaliza Ramos, Alfonso A1 Greselin, Francesca A1 Salvatore, Ingrassia A1 Mayo Iscar, Agustín K1 Análisis multivariante AB Mixtures of Gaussian factors are powerful tools for modeling an unobservedheterogeneous population, offering - at the same time - dimension reductionand model-based clustering. Unfortunately, the high prevalence of spurioussolutions and the disturbing effects of outlying observations, along maximum likelihoodestimation, open serious issues. In this paper we consider restrictions forthe component covariances, to avoid spurious solutions, and trimming, to providerobustness against violations of normality assumptions of the underlying latent factors.A detailed AECM algorithm for this new approach is presented. Simulationresults and an application to the AIS dataset show the aim and effectiveness of theproposed methodology. PB Universidad de Valladolid. Facultad de Medicina YR 2015 FD 2015 LK http://uvadoc.uva.es/handle/10324/11618 UL http://uvadoc.uva.es/handle/10324/11618 LA eng NO Arxiv, Marzo 2015, vol. 1. p.1-30 NO Producción Científica DS UVaDOC RD 23-nov-2024