RT info:eu-repo/semantics/article T1 Electronic effects on melting: Comparison of aluminum cluster anions and cations A1 Starace, Anne K. A1 Neal, Colleen M. A1 Cao, Baopeng A1 Jarrold, Martin F. A1 Aguado Rodríguez, Andrés A1 López Rodríguez, José Manuel K1 Líquidos-Propiedades térmicas K1 Sólidos-Propiedades eléctricas AB Heat capacities have been measured as a function of temperature for aluminum cluster anions with 35–70 atoms. Melting temperatures and latent heats are determined from peaks in the heat capacities; cohesive energies are obtained for solid clusters from the latent heats and dissociation energies determined for liquid clusters. The melting temperatures, latent heats, and cohesive energies for the aluminum cluster anions are compared to previous measurements for the corresponding cations. Density functional theory calculations have been performed to identify the global minimum energy geometries for the cluster anions. The lowest energy geometries fall into four main families: distorted decahedral fragments, fcc fragments, fcc fragments with stacking faults, and “disordered” roughly spherical structures. The comparison of the cohesive energies for the lowest energy geometries with the measured values allows us to interpret the size variation in the latent heats. Both geometric and electronic shell closings contribute to the variations in the cohesive energies (and latent heats), but structural changes appear to be mainly responsible for the large variations in the melting temperatures with cluster size. The significant charge dependence of the latent heats found for some cluster sizes indicates that the electronic structure can change substantially when the cluster melts. PB American Institute of Physics YR 2009 FD 2009 LK http://uvadoc.uva.es/handle/10324/2452 UL http://uvadoc.uva.es/handle/10324/2452 LA eng NO Journal of Chemical Physics, v. 131, n. 4 (2009), p.1- 11 NO Producción Científica DS UVaDOC RD 11-jul-2024