RT info:eu-repo/semantics/article T1 Computational Aspects of Retrieving a Representation of an Algebraic Geometry Code A1 Márquez Corbella, Irene A1 Martínez Moro, Edgar A1 Pellikaan, Ruud A1 Ruano Benito, Diego AB Code-based cryptography is an interesting alternative to classic number-theoretic public key cryptosystem since it is conjectured to be secure against quantum computer attacks. Many families of codes have been proposed for these cryptosystems such as algebraic geometry codes. In [Designs, Codes and Cryptography, pages 1-16, 2012] -for so called very strong algebraic geometry codes $\mathcal C=C_L(\mathcal X, \mathcal P, E)$, where $\mathcal X$ is an algebraic curve over $\mathbb F_q$, $\mathcal P$ is an $n$-tuple of mutually distinct $\mathbb F_q$-rational points of $\mathcal X$ and $E$ is a divisor of $\mathcal X$ with disjoint support from $\mathcal P$ --- it was shown that an equivalent representation $\mathcal C=C_L(\mathcal Y, \mathcal Q, F)$ can be found. The $n$-tuple of points is obtained directly from a generator matrix of $\mathcal C$, where the columns are viewed as homogeneous coordinates of these points. The curve $\mathcal Y$ is given by $I_2(\mathcal Y)$, the homogeneous elements of degree $2$ of the vanishing ideal $I(\mathcal Y)$. Furthermore, it was shown that $I_2(\mathcal Y)$ can be computed efficiently as the kernel of certain linear map. What was not shown was how to get the divisor $F$ and how to obtain efficiently an adequate decoding algorithm for the new representation. The main result of this paper is an efficient computational approach to the first problem, that is getting $F$. The security status of the McEliece public key cryptosystem using algebraic geometry codes is still not completely settled and is left as an open problem YR 2014 FD 2014 LK http://uvadoc.uva.es/handle/10324/31738 UL http://uvadoc.uva.es/handle/10324/31738 LA eng NO Journal of Symbolic Computation. Volume 64, pages 67-87 (2014) NO Producción Científica DS UVaDOC RD 08-nov-2024