RT info:eu-repo/semantics/bookPart T1 Geometric and Computational Approach to Classical and Quantum Secret Sharing A1 Matsumoto, Ryutaroh A1 Ruano Benito, Diego AB Linear ramp secret sharing schemes are given by a pair of nested codes. In this work algebraic geometry codes are considered. We found sufficient conditions for qualified or forbidden sets by using geometric properties of the set of points. This article considers both classical schemes and quantum schemes. YR 2017 FD 2017 LK http://uvadoc.uva.es/handle/10324/31740 UL http://uvadoc.uva.es/handle/10324/31740 LA eng NO Geometric and Computational Approach to Classical and Quantum Secret Sharing. In: Applications of Computer Algebra. ACA 2015. Kotsireas I., Martínez-Moro E. (eds). Springer Proceedings in Mathematics & Statistics, vol 198. Springer, pages 267-272 (2017) NO Producción Científica DS UVaDOC RD 22-dic-2024