RT info:eu-repo/semantics/article T1 Kinetics of large B clusters in crystalline and preamorphized silicon A1 Aboy Cebrián, María A1 Pelaz Montes, María Lourdes A1 Bruno, Elena A1 Mirabella, Salvo A1 Boninelli, Simona K1 Silicio cristalino K1 crystalline silicon AB We present an extended model for B clustering in crystalline or in preamorphized Si and with validity under conditions below and above the equilibrium solid solubility limit of B in Si. This model includes boron-interstitial clusters (BICs) with BnIm configurations—complexes with n B atoms and m Si interstitials—larger (n > 4), and eventually more stable, than those included in previous models. In crystalline Si, the formation and dissolution pathways into large BICs configurations require high B concentration and depend on the flux of Si interstitials. In the presence of high Si interstitial flux, large BICs with a relatively large number of interstitials (m ≥ n) are formed, dissolving under relatively low thermal budgets. On the contrary, for low Si interstitial flux large BICs with few interstitials (m ≪ n) can form, which are more stable than small BICs, and whose complete dissolution requires very intense thermal budgets. We have also investigated the kinetics of large BICs in preamorphized Si, both experimentally and theoretically. B was implanted at a high-dose into preamorphized Si, and the B precipitation was studied by transmission electron microscopy and by sheet resistance and Hall measurement techniques. A simplified model for B clustering and redistribution in amorphous Si is proposed, including the experimental value for the B diffusivity in amorphous Si and the energetics of BICs. Our model suggests that B2, B3I, B4I and B4I2 clusters are the most energetically favored configurations, with relative abundance depending on B concentration. After recrystallization, thermal anneals up to 1100 °C evidence that BICs evolve under very low flux of Si interstitials under the particular experimental conditions considered. Simulations indicate that for very high B concentrations and low Si interstitial flux a significant fraction of the initial small BICs evolves into larger and very stable BIC configurations that survive even after intense thermal budgets, as confirmed by energy filtered transmission electron microscopy analyses. The correlation between simulations and Hall measurements on these samples suggest that hole mobility is significantly degraded by the presence of a high concentration of BICs. PB AIP Publishing SN 0021-8979 YR 2011 FD 2011 LK http://uvadoc.uva.es/handle/10324/31961 UL http://uvadoc.uva.es/handle/10324/31961 LA eng NO Journal of Applied Physics 110, 073524 (2011) NO Producción Científica DS UVaDOC RD 24-nov-2024