RT info:eu-repo/semantics/article T1 A Reweighting Approach to Robust Clustering A1 Dotto, Francesco A1 Farcomeni, Alessio A1 García Escudero, Luis Ángel A1 Mayo Iscar, Agustín K1 Cluster analysis K1 Trimming K1 Robustness K1 Minimum covariance determinant estimator AB An iteratively reweighted approach for robust clustering is presented inthis work. The method is initialized with a very robust clustering partitionbased on an high trimming level. The initial partition is then refinedto reduce the number of wrongly discarded observations and substantiallyincrease efficiency. Simulation studies and real data examples indicate thatthe final clustering solution is both robust and efficient, and naturally adaptsto the true underlying contamination level. PB Springer SN 0960-3174 YR 2018 FD 2018 LK http://uvadoc.uva.es/handle/10324/32022 UL http://uvadoc.uva.es/handle/10324/32022 LA eng NO Statistics and Computing, 2018, vol. 28, p.477-493 NO Producción Científica DS UVaDOC RD 03-abr-2025