RT info:eu-repo/semantics/conferenceObject T1 Supervised Machine Learning Techniques for Quality of Transmission Assessment in Optical Networks A1 Mata, Javier A1 Miguel Jiménez, Ignacio de A1 Durán Barroso, Ramón José A1 Aguado Manzano, Juan Carlos A1 Merayo Álvarez, Noemí A1 Ruiz Pérez, Lidia A1 Fernández Reguero, Patricia A1 Lorenzo Toledo, Rubén Mateo A1 Abril Domingo, Evaristo José A1 Tomkos, Ioannis K1 Aprendizaje automático K1 Red óptica K1 Machine learning K1 Optical network AB We propose and compare a number of machine learning models to classify unestablished lightpaths into high or low quality of transmission (QoT) categories in impairment-aware wavelength-routed optical networks. The performance of these models is evaluated in long haul communication networks and compared to previous proposals. Results show that, especially random forests and bagging trees approaches, significantly reduce the required computing time to classify the QoT of a given lightpath, while accuracy remains around 99.9%. PB Institute of Electrical and Electronics Engineers (IEEE) SN 978-1-5386-6605-0 YR 2018 FD 2018 LK http://uvadoc.uva.es/handle/10324/33520 UL http://uvadoc.uva.es/handle/10324/33520 LA eng NO 2018 20th International Conference on Transparent Optical Networks (ICTON), 1-5 July 2018, Bucharest, Romania NO Producción Científica DS UVaDOC RD 24-nov-2024