RT info:eu-repo/semantics/article T1 On the second Feng-Rao distance of Algebraic Geometry codes related to Arf semigroups A1 Farrán Martín, José Ignacio A1 García Sánchez, Pedro A. A1 Heredia, Benjamín A. K1 Algebraic geometry codes K1 Código geométrico-algebráico K1 Feng-Rao distance K1 Distancia Feng-Rao K1 Arf semigroups K1 Semigrupos de Arf AB We describe the second (generalized) Feng-Rao distance for elements in an Arf numerical semigroup that are greater than or equal to the conductor of the semigroup. This provides a lower bound for the second Hamming weight for one point AG codes. In particular, we can obtain the second Feng-Rao distance for the codes defined by asymptotically good towers of function fields whose Weierstrass semigroups are inductive. In addition, we compute the second Feng-Rao number, and provide some examples and comparisons with previous results on this topic. These calculations rely on Apéry sets, and thus several results concerning Apéry sets of Arf semigroups are presented. PB Springer Link SN 1573-7586 YR 2018 FD 2018 LK http://uvadoc.uva.es/handle/10324/35938 UL http://uvadoc.uva.es/handle/10324/35938 LA eng NO Designs, Codes and Cryptography, 2018, vol. 86, n. 12, p. 2893-2916 NO Producción Científica DS UVaDOC RD 24-nov-2024