RT info:eu-repo/semantics/article T1 Proportionally modular affine semigroups A1 García García, J. Ignacio A1 Moreno Frías, María Ángeles A1 Vigneron Tenorio, Alberto K1 Affine numerical semigroups K1 Semigrupos numéricos afines K1 Buchsbaum ring K1 Anillo de Buchsbaum K1 Cohen-Macaulay ring K1 Anillo de Cohen-Macaulay K1 Gorenstein ring K1 Anillo de Gorenstein K1 Numerical monoid K1 Monoide numérico AB This work introduces a new kind of semigroup of Np called proportionally modular affine semigroup. These semigroups are defined by modularDiophantine inequalities and they are a generalization of proportionallymodular numerical semigroups. We give an algorithm to compute theirminimal generating sets. We also specialize on the case p = 2. For thiscase, we provide a faster algorithm to compute their minimal system ofgenerators, prove they are Cohen-Macaulay and Buchsbaum, and determinate their (minimal) Frobenius vectors. Besides, Gorenstein proportionally modular affine semigroups are characterized. PB World Scientific SN 1793-6829 YR 2018 FD 2018 LK http://uvadoc.uva.es/handle/10324/35969 UL http://uvadoc.uva.es/handle/10324/35969 LA eng NO Journal of Algebra and Its Applications, 2018, vol. 17, n. 1. 7 p. NO Producción Científica DS UVaDOC RD 22-dic-2024