RT info:eu-repo/semantics/article T1 Poisson-Hopf algebra deformations of Lie-Hamilton systems A1 Ballesteros Castañeda, Ángel A1 Campoamor Stursberg, Rutwig A1 Fernandez Saiz, Eduardo A1 Herranz, Francisco J. A1 Lucas Veguillas, Javier de K1 Lie system K1 Vessiot-Guldberg Lie algebra K1 Hopf algebra K1 Poisson coalgebra K1 oscillator system K1 position-dependent mass K1 Riccati equation AB Hopf algebra deformations are merged with a class of Lie systems ofHamiltonian type, the so-called Lie–Hamilton systems, to devise a novelformalism: the Poisson–Hopf algebra deformations of Lie–Hamilton systems.This approach applies to any Hopf algebra deformation of any Lie–Hamiltonsystem. Remarkably, a Hopf algebra deformation transforms a Lie–Hamiltonsystem, whose dynamic is governed by a finite-dimensional Lie algebra offunctions, into a non-Lie–Hamilton system associated with a Poisson–Hopfalgebra of functions that allows for the explicit description of its t-independentconstants of the motion from deformed Casimir functions. We illustrate ourapproach by considering the Poisson–Hopf algebra analogue of the nonstandard quantum deformation of sl(2) and its applications to deform wellknown Lie–Hamilton systems describing oscillator systems, Milne–Pinneyequations, and several types of Riccati equations. In particular, we obtaina new position-dependent mass oscillator system with a time-dependentfrequency. PB IOP Publishing SN 1751-8121 YR 2018 FD 2018 LK http://uvadoc.uva.es/handle/10324/40847 UL http://uvadoc.uva.es/handle/10324/40847 LA eng NO Journal of Physics A: Mathematical and Theoretical, 2018, vol. 51, 065202 NO Producción Científica DS UVaDOC RD 11-abr-2025