RT info:eu-repo/semantics/article T1 Cayley-Klein Poisson Homogeneous Spaces A1 Herranz Zorrilla, Francisco José A1 Ballesteros Castañeda, Ángel A1 Gutiérrez Sagredo, Iván A1 Santander Navarro, Mariano K1 Quantum groups K1 Grupos cuánticos K1 Riemannian geometry K1 Geometría de Riemann AB The nine two-dimensional Cayley–Klein geometries are firstly reviewed by following a gradedcontraction approach. Each geometry is considered as a set of three symmetrical homogeneous spaces (of points and two kinds of lines), in such a manner that the graded contractionparameters determine their curvature and signature. Secondly, new Poisson homogeneousspaces are constructed by making use of certain Poisson–Lie structures on the corresponding motion groups. Therefore, the quantization of these spaces provides noncommutativeanalogues of the Cayley–Klein geometries. The kinematical interpretation for the semiRiemannian and pseudo-Riemannian Cayley–Klein geometries is emphasized, since they arejust Newtonian and Lorentzian spacetimes of constant curvature. SN 1314-3247 YR 2019 FD 2019 LK http://uvadoc.uva.es/handle/10324/40883 UL http://uvadoc.uva.es/handle/10324/40883 LA eng NO Geometry, Integrability and Quantization, 2019, vol. XX. p. 161-183 NO Producción Científica DS UVaDOC RD 22-ene-2025