RT info:eu-repo/semantics/article T1 Rate-induced tipping and saddle-node bifurcation for quadratic differential equations with nonautonomous asymptotic dynamics A1 Longo, Iacopo Paolo A1 Núñez Jiménez, María del Carmen A1 Obaya, Rafael A1 Rasmussen, Martin K1 Critical transition K1 Nonautonomous bifurcation K1 Nonautonomous dynamical systems K1 Pullback attractor K1 Pullback repeller K1 Rate-induced tipping K1 Skew product flow AB An in-depth analysis of nonautonomous bifurcations of saddle-nodetype for scalar differential equations $x'=-x^2+q(t)\,x+p(t)$,where $q\colon\R\to\R$ and $p\colon\R\to\R$ are bounded and uniformlycontinuous, is fundamental to explain the absence or occurrence ofrate-induced tipping for the differential equation$y' =(y-(2/\pi)\arctan(ct))^2+p(t)$ as the rate $c$ varies on $[0,\infty)$.A classical attractor-repeller pair, whose existence for $c=0$ is assumed,may persist for any $c>0$, or disappear for a certain critical rate $c=c_0$,giving rise to rate-induced tipping. A suitable example demonstrates thatthis tipping phenomenon may be reversible. YR 2020 FD 2020 LK http://uvadoc.uva.es/handle/10324/40888 UL http://uvadoc.uva.es/handle/10324/40888 LA eng NO Sometido a publicación DS UVaDOC RD 28-nov-2024