RT info:eu-repo/semantics/article T1 The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests A1 Wiens, Roger C. A1 Maurice, Sylvestre A1 Robinson, Scott H. A1 Nelson, Anthony E. A1 Cais, Philippe A1 Bernardi, Pernelle A1 Newell, Raymond T. A1 Clegg, Sam A1 Sharma, Shiv K. A1 Storms, Steven A1 Deming, Jonathan A1 Beckman, Darrel A1 Ollila, Ann M. A1 Gasnault, Olivier A1 Anderson, Ryan B. A1 André, Yves A1 Michael Angel, S. A1 Arana, Gorka A1 Auden, Elizabeth A1 Beck, Pierre A1 Becker, Joseph A1 Benzerara, Karim A1 Bernard, Sylvain A1 Beyssac, Olivier A1 Borges, Louis A1 Bousquet, Bruno A1 Boyd, Kerry A1 Caffrey, Michael A1 Carlson, Jeffrey A1 Castro, Kepa A1 Celis, Jorden A1 Chide, Baptiste A1 Clark, Kevin A1 Cloutis, Edward A1 Cordoba, Elizabeth C. A1 Cousin, Agnes A1 Dale, Magdalena A1 Deflores, Lauren A1 Delapp, Dorothea A1 Deleuze, Muriel A1 Dirmyer, Matthew A1 Donny, Christophe A1 Dromart, Gilles A1 George Duran, M. A1 Egan, Miles A1 Ervin, Joan A1 Fabre, Cecile A1 Fau, Amaury A1 Fischer, Woodward A1 Forni, Olivier A1 Fouchet, Thierry A1 Fresquez, Reuben A1 Frydenvang, Jens A1 Gasway, Denine A1 Gontijo, Ivair A1 Grotzinger, John A1 Jacob, Xavier A1 Jacquinod, Sophie A1 Johnson, Jeffrey R. A1 Klisiewicz, Roberta A. A1 Lake, James A1 Lanza, Nina A1 Laserna, Javier A1 Lasue, Jeremie A1 Le Mouélic, Stéphane A1 Legett, Carey A1 Leveille, Richard A1 Lewin, Eric A1 López Reyes, Guillermo Eduardo A1 Lorenz, Ralph A1 Lorigny, Eric A1 Love, Steven P. A1 Lucero, Briana A1 Madariaga Mota, Juan Manuel A1 Madsen, Morten A1 Madsen, Soren A1 Mangold, Nicolas A1 Manrique Martínez, José Antonio A1 Martinez, J. P. A1 Martínez Frías, Jesús A1 McCabe, Kevin P. A1 McConnochie, Timothy H. A1 McGlown, Justin M. A1 McLennan, Scott M. A1 Melikechi, Noureddine A1 Meslin, Pierre-Yves A1 Michel, John M. A1 Mimoun, David A1 Misra, Anupam A1 Montagnac, Gilles A1 Montmessin, Franck A1 Mousset, Valerie A1 Murdoch, Naomi A1 Newsom, Horton A1 Ott, Logan A. A1 Ousnamer, Zachary R. A1 Pares, Laurent A1 Parot, Yann A1 Pawluczyk, Rafal A1 Glen Peterson, C. A1 Pilleri, Paolo A1 Pinet, Patrick A1 Pont, Gabriel A1 Poulet, Francois A1 Provost, Cheryl A1 Quertier, Benjamin A1 Quinn, Heather A1 Rapin, William A1 Reess, Jean-Michel A1 Regan, Amy H. A1 Reyes-Newell, Adriana L. A1 Romano, Philip J. A1 Royer, Clement A1 Rull Pérez, Fernando A1 Sandoval, Benigno A1 Sarrao, Joseph H. A1 Sautter, Violaine A1 Schoppers, Marcel J. A1 Schröder, Susanne A1 Seitz, Daniel A1 Shepherd, Terra A1 Sobron, Pablo A1 Dubois, Bruno A1 Sridhar, Vishnu A1 Toplis, Michael J. A1 Torre-Fdez, Imanol A1 Trettel, Ian A. A1 Underwood, Mark A1 Valdez, Andres A1 Valdez, Jacob A1 Venhaus, Dawn A1 Willis, Peter K1 Infrared spectroscopy; Jezero crater; LIBS; Mars; Microphone on Mars; Perseverance rover; Raman spectroscopy; SuperCam. AB The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam's body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245-340 and 385-465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535-853 nm ( 105-7070cm−1 Raman shift relative to the 532 nm green laser beam) with 12cm−1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well. PB Springer SN 0038-6308 YR 2020 FD 2020 LK http://uvadoc.uva.es/handle/10324/46261 UL http://uvadoc.uva.es/handle/10324/46261 LA eng NO Space Sci Rev . , Diciembre 2020; Vo. 217(1), n. 4 DS UVaDOC RD 04-dic-2024