RT info:eu-repo/semantics/article T1 Combining tunable proteolytic sequences and a VEGF-mimetic peptide for the spatiotemporal control of angiogenesis within Elastin-Like Recombinamer scaffolds A1 González Pérez, Fernando A1 Ibáñez Fonseca, Arturo A1 Alonso Rodrigo, Matilde A1 Rodríguez Cabello, José Carlos AB One of the main challenges in regenerative medicine is the spatiotemporal control of angiogenesis, which is key for the successful repair of many tissues, and determines the proper integration of the implant through the generation of a functional vascular network. To this end, we have designed a three- dimensional (3D) model consisting of a coaxial binary elastin-like recombinamer (ELR) tubular construct. It displays fast and slow proteolytic hydrogels on its inner and outer part, respectively, both sensitive to the urokinase plasminogen activator protease. The ELRs used to build the scaffold included crosslinkable domains to stabilize the structure and a conjugated VEGF-derived peptide (QK) to induce angiogenesis. The mechanical and morphological evaluation of the ELR hydrogels proved their suitability for soft tis- sue regeneration. In addition, in vitro studies evidenced the effect of the QK peptide on endothelial cell spreading and anastomosis. Moreover, immunohistochemical analyses after subcutaneous implantation of the ELR hydrogels in mice showed the induction of a low macrophage response that resolved over time. The implantation of the 3D model constructs evidenced the ability of the fast proteolytic sequence and the QK peptide to guide cell infiltration and capillary formation in the pre-designed arrangement of the constructs. These results set the basis for the application of this type of scaffolds in regenerative medicine, where spatiotemporally controlled vascularization will help in the promotion of an optimal tissue repair. PB Elsevier SN 1742-7061 YR 2021 FD 2021 LK https://uvadoc.uva.es/handle/10324/47856 UL https://uvadoc.uva.es/handle/10324/47856 LA spa NO F. González-Pérez, A. Ibáñez-Fonseca, M. Alonso et al., Combining tunable proteolytic sequences and a VEGFmimetic peptide for the spatiotemporal control of angiogenesis within Elastin-Like Recombinamer scaffolds, Act a Biomaterialia, https: //doi.org/10.1016/j.actbio.2021.06.005 NO Producción Científica DS UVaDOC RD 23-nov-2024