RT info:eu-repo/semantics/article T1 Surjectivity of the asymptotic borel map in Carleman–Roumieu ultraholomorphic classes defined by regular sequences A1 Jiménez Garrido, Jesús Javier A1 Sanz Gil, Javier A1 Schindl, Gerhard K1 Carleman ultraholomorphic classes K1 Asymptotic expansions K1 Laplace transform K1 Regular variation K1 12 Matemáticas AB We study the surjectivity of, and the existence of right inverses for, the asymptotic Borel mapin Carleman–Roumieu ultraholomorphic classes defined by regular sequences in the senseof E. M. Dyn’kin. We extend previous results by J. Schmets and M. Valdivia, by V. Thilliez,and by the authors, and show the prominent role played by an index, associated with thesequence, that was introduced by V. Thilliez. The techniques involve regular variation, integraltransforms and characterization results of A. Debrouwere in a half-plane, stemming from hisstudy of the surjectivity of the moment mapping in general Gelfand–Shilov spaces. PB Springer SN 1578-7303 YR 2021 FD 2021 LK https://uvadoc.uva.es/handle/10324/49038 UL https://uvadoc.uva.es/handle/10324/49038 LA eng NO Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, vol.115, n. 4, p. 1-18 NO Producción Científica DS UVaDOC RD 22-dic-2024