RT info:eu-repo/semantics/masterThesis T1 Adapting a quality model for a Big Data application: the case of a feature prediction system A1 Montero Pérez, Osbel A2 Universidad de Valladolid. Escuela de Ingeniería Informática de Valladolid K1 Big Data K1 Quality models K1 Feature prediction systems K1 Quality characteristics AB En la última década hemos sido testigos del considerable incremento de proyectos basados en aplicaciones de Big Data. Algunos de los tipos más populares de esas aplicaciones han sido: los sistemas de recomendaciones, la predicción de características y la toma de decisiones. En este nuevo auge han surgido propuestas de implementación de modelos de calidad para las aplicaciones de Big data que por su gran heterogeneidad se hace difícil la selección del modelo de calidad ideal para el desarrollo de un tipo específico de aplicación de Big Data.En el presente Trabajo de Fin de Máster se realiza un estudio de mapeo sistemático (SMS, por sus siglas en inglés) que parte de dos preguntas clave de investigación. La primera trata sobre cuál es el estado en la identificación de riesgos, problemas o desafíos en las aplicaciones de Big Data. La segunda, trata sobre qué modelos de calidad se han aplicado hasta la fecha a las aplicaciones de Big Data, específicamente a los sistemas de predicción de características. El objetivo final es analizar los modelos de calidad disponibles y adaptar un modelo de calidad a partir de los existentes que se puedan aplicar a un tipo específico de aplicación de Big Data: los sistemas de predicción de características. El modelo definido comprende un conjunto de características de calidad definidas como parte del modelo y métricas de calidad para evaluarlas.Finalmente, se realiza una aproximación a un caso de estudio donde se aplica el modelo y se evalúan las características de calidad definidas a través de sus métricas de calidad presentándose los resultados obtenidos. YR 2021 FD 2021 LK https://uvadoc.uva.es/handle/10324/50379 UL https://uvadoc.uva.es/handle/10324/50379 LA eng NO Departamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos) DS UVaDOC RD 22-dic-2024