RT info:eu-repo/semantics/article T1 Artificial neural network for short-term load forecasting in distribution systems A1 Hernández Callejo, Luis A1 Baladrón García, Carlos A1 Aguiar Pérez, Javier Manuel A1 Calavia, Lorena A1 Carro Martínez, Belén A1 Sánchez Esguevillas, Antonio Javier A1 Pérez, Francisco A1 Fernández, Ángel A1 Lloret, Jaime K1 Microgrid K1 Short-term electric load forecasting K1 Multi-layer perceptron K1 Artificial neural network K1 Neural networks K1 33 Ciencias Tecnológicas AB The new paradigms and latest developments in the Electrical Grid are based on the introduction of distributed intelligence at several stages of its physical layer, giving birth to concepts such as Smart Grids, Virtual Power Plants, microgrids, Smart Buildings and Smart Environments. Distributed Generation (DG) is a philosophy in which energy is no longer produced exclusively in huge centralized plants, but also in smaller premises which take advantage of local conditions in order to minimize transmission losses and optimize production and consumption. This represents a new opportunity for renewable energy, because small elements such as solar panels and wind turbines are expected to be scattered along the grid, feeding local installations or selling energy to the grid depending on their local generation/consumption conditions. The introduction of these highly dynamic elements will lead to a substantial change in the curves of demanded energy. The aim of this paper is to apply Short-Term Load Forecasting (STLF) in microgrid environments with curves and similar behaviours, using two different data sets: the first one packing electricity consumption information during four years and six months in a microgrid along with calendar data, while the second one will be just four months of the previous parameters along with the solar radiation from the site. For the first set of data different STLF models will be discussed, studying the effect of each variable, in order to identify the best one. That model will be employed with the second set of data, in order to make a comparison with a new model that takes into account the solar radiation, since the photovoltaic installations of the microgrid will cause the power demand to fluctuate depending on the solar radiation. PB MDPI SN 1996-1073 YR 2014 FD 2014 LK https://uvadoc.uva.es/handle/10324/56883 UL https://uvadoc.uva.es/handle/10324/56883 LA eng NO Energies, 2014, vol. 7, n. 3, p. 1576-1598 NO Producción Científica DS UVaDOC RD 05-ene-2025