RT info:eu-repo/semantics/article T1 Classification of architectural heritage images using deep learning techniques A1 Llamas, José A1 Martín Lerones, Pedro A1 Medina Aparicio, Roberto A1 Zalama Casanova, Eduardo A1 Gómez García-Bermejo, Jaime K1 Image classification K1 Deep learning K1 Convolutional neural network K1 Digital documentation K1 Architectural heritage K1 foto AB The classification of the images taken during the measurement of an architectural asset is an essential task within the digital documentation of cultural heritage. A large number of images are usually handled, so their classification is a tedious task (and therefore prone to errors) and habitually consumes a lot of time. The availability of automatic techniques to facilitate these sorting tasks would improve an important part of the digital documentation process. In addition, a correct classification of the available images allows better management and more efficient searches through specific terms, thus helping in the tasks of studying and interpreting the heritage asset in question. The main objective of this article is the application of techniques based on deep learning for the classification of images of architectural heritage, specifically through the use of convolutional neural networks. For this, the utility of training these networks from scratch or only fine tuning pre-trained networks is evaluated. All this has been applied to classifying elements of interest in images of buildings with architectural heritage value. As no datasets of this type, suitable for network training, have been located, a new dataset has been created and made available to the public. Promising results have been obtained in terms of accuracy and it is considered that the application of these techniques can contribute significantly to the digital documentation of architectural heritage. PB MDPI YR 2017 FD 2017 LK https://uvadoc.uva.es/handle/10324/57233 UL https://uvadoc.uva.es/handle/10324/57233 LA eng NO Applied Sciences, 2017, vol. 7, n. 10, p. 992 NO Producción Científica DS UVaDOC RD 21-nov-2024