RT info:eu-repo/semantics/article T1 Bifurcation theory of attractors and minimal sets in d-concave nonautonomous scalar ordinary differential equations A1 Dueñas Pamplona, Jesús A1 Núñez Jiménez, María del Carmen A1 Obaya, Rafael K1 Matemáticas K1 Álgebra K1 Ecuaciones diferenciales K1 Nonautonomous dynamical systems K1 D-concave scalar ODEs K1 Bifurcation theory K1 Minimal sets K1 Sistemas dinámicos no autónomos K1 EDO escalares D-cóncavas K1 Teoría de la bifurcación K1 Conjuntos mínimos K1 12 Matemáticas AB Two one-parametric bifurcation problems for scalar nonautonomous ordinary differential equations are analyzed assuming the coercivity of the time-dependent function determining the equation and the concavity of its derivative with respect to the state variable. The skewproduct formalism leads to the analysis of the number and properties of the minimal sets and of the shape of the global attractor, whose abrupt variations determine the occurrence of local saddle-node, local transcritical and global pitchfork bifurcation points of minimal sets and of discontinuity points of the global attractor. PB Elsevier SN 0022-0396 YR 2023 FD 2023 LK https://uvadoc.uva.es/handle/10324/58921 UL https://uvadoc.uva.es/handle/10324/58921 LA eng NO Journal of Differential Equations, 2023, vol. 361, p. 138-182 NO Producción Científica DS UVaDOC RD 24-nov-2024