RT info:eu-repo/semantics/article T1 Uniform stability and chaotic dynamics in nonhomogeneous linear dissipative scalar ordinary differential equations A1 Campos, Juan A1 Núñez Jiménez, María del Carmen A1 Obaya, Rafael K1 Matemáticas K1 Ecuaciones diferenciales K1 Nonautonomous ordinary differential equations K1 Dissipativity and global attractor K1 Chaotic dynamics K1 Ecuaciones diferenciales ordinarias no autónomas K1 Disipatividad y atractor global K1 Dinámica caótica K1 12 Matemáticas K1 1202.07 Ecuaciones en Diferencias AB The paper analyzes the structure and the inner long-term dynamics of the invariant compact sets for the skewproduct flow induced by a family of time-dependent ordinary differential equations of nonhomogeneous linear dissipative type. The main assumptions are made on the dissipative term and on the homogeneous linear term of the equations. The rich casuistic includes the uniform stability of the invariant compact sets, as well as the presence of Li-Yorke chaos and Auslander-Yorke chaos inside the attractor. PB Elsevier SN 0022-0396 YR 2023 FD 2023 LK https://uvadoc.uva.es/handle/10324/58923 UL https://uvadoc.uva.es/handle/10324/58923 LA eng NO Journal of Differential Equations, 2023, vol. 361, p. 248-287 NO Producción Científica DS UVaDOC RD 24-nov-2024